April 7th, 2011 Maine Worksite Wellness Initiative Del Leonard, MS, CIH

Status of Legal and Recommended Occupational Airborne Exposure Limits: OSHA PELs and ACGIH TLVs, A Quantitative Examination

Topics

- Background
 - Origins & connections between most commonly used air contaminant limits
 - Definitions/terms
 - Difference between air limits and comprehensive health standards
- Examination of substances with carcinogen designations
- Case study

- Dec. 1970 Congress Passes the OSH-Act
 - gave 2-year window for the new agency to adopt existing standards
- May 1971 Air Limits Adopted:
 - ACGIH 1968 TLVs ~ 450 ("Z-1 Table")
 - ANSI Z-standards ~ 21 ("Z-2 Table")
 - ANSI mineral dusts ~ 9 ("Z-3 Table")
 - Found in CFR 1910.1000

Definitions/Background

- Newly adopted air contaminant limits termed: Permissible Exposure Limits (PELs)
- Since adoption:
 - Few PEL values have changed (e.g. lowered)
 - Few PELs for other substances created
 - Exception: Comprehensive Health Stds.
- o Shortcomings:
 - Adopted limits did not receive adequate (or any?) vetting
 - OSH-act did not provide for change/updating process over time

- American Conference of Governmental Hygienists
 - ACGIH professional, non-profit scientific association
 - Membership from academic, governmental, military and private sectors
 - Process for TLV updates & changes:
 - Annual report (published early February):
 - NIC list: proposed changes (values, designations, new substances, etc.)
 - Lists substances/changes adopted

ACGIH

- "Documentations" provide rational for TLVs & Designations:
 - o "A1, A2, A3, A4, or A5" (carcinogens)
 - "Skin" (absorption viable exp. route)
 - Sen" (skin or respiratory sensitizer)
- BEIs Biological Exposure Indices
- TLVs generally regarded as "state of science"

o ACGIH position:

- Non-profit scientific association
- Not a standards-setting body
- TLVs & BEIs expression of scientific opinion
- TLVs & BEIs based solely on health factors, not technical or economic feasibility
- Since 2002 lawsuits, state and federal entities advised not to use TLVs as basis for citations

- Occupational Exposure Limit (OEL)
 - Generic term, can apply to:
 - **OSHA PELS**
 - ACGIH TLVs
 - NIOSH RELs
 - AIHA WEELs
 - Manufacturer limits (DuPont)
 - Other countries (German MAKs)

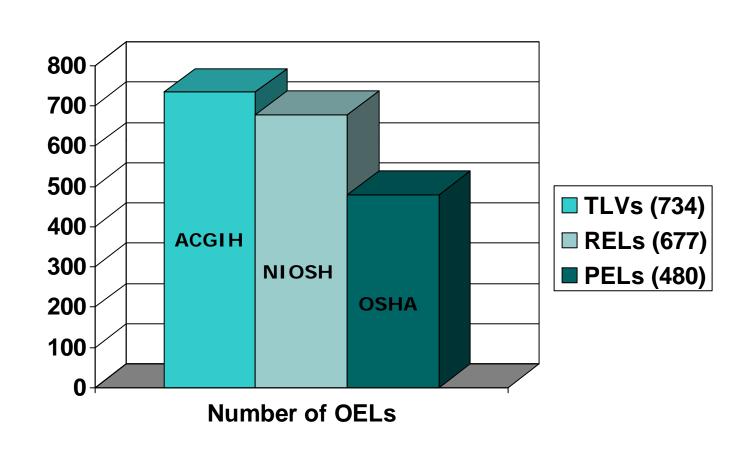
Air Limit Limitations

- Other routes of entry for substances
- Variability (what's the distribution?)
- Tendency to regard levels as distinguishing between "safe" and "unsafe"
- Focuses on individual substances, mixtures seldom addressed

What is an Occ. Exposure Limit (OEL)?

The average airborne conc. of a substance required or recommended not to be exceeded.

- Usually over an 8-hr shift;
- Exceptions: STELs & Ceiling values


2003: Monitoring Al dust exposure during changing of dust collector cylinder filters.

OSHA PEL: $15 \text{mg/m}^3(T)$, $5 \text{mg/m}^3(R)$

ACGIH TLV: $1mg/m^3(R) - 2008$

Background: Number of OELs

PEL Background

- 1988 OSHA Air Contaminant Initiative:
 - Lowered PELs for 212 substances, new limits for 164 - all mostly to '89 TLVs
 - July, 1992 11th circuit court vacated entire rulemaking
 - March, 1993 OSHA reverts back to enforcing 1971 levels ('68 TLVs)
 - Exception: some states with OSHA plans maintained 1989 changes.

PEL Background

- Lowering of a PEL has been accomplished through promulgating Comprehensive Health Standards
 - 1971-2007 29 CHS:
 - 15 substance-specific w/ air limits
 - o 1 non-specific with an air limit
 - o "13 carcinogens" no air limits

PEL Background

- Each CHS has similar template:
 - Action Level usually 50% of (new) PEL
 - Initial & periodic air monitoring (e.g. process changes)
 - Medical surveillance & Training (>AL)
 - Signs and Labels
 - Record Keeping
 - Abatement of exposure (>PEL) via engineering, admin., PPE controls
- Some CHS PELs/ALs lower than TLVs

15 CHS With Air Limit Triggers

	Substance	Voar Promulaato
0		Year Promulgate
0	Asbestos	1971
0	Vinyl chloride	1975
0	Acrylonitrile	1978
0	1,2-dibromo-3- chloropropane	1978
0	Inorganic Arsenic	1978
0	Lead	1979
0	Cotton Dust	1980
0	Ethylene oxide	1984
0	Benzene	1987
0	Formaldehyde	1988
0	Cadmium	1992
0	Methylenedianiline	1992
0	1,3-Butadiene	1996
0	Methylene chloride	1997
0	Hexavalent chromium	2007

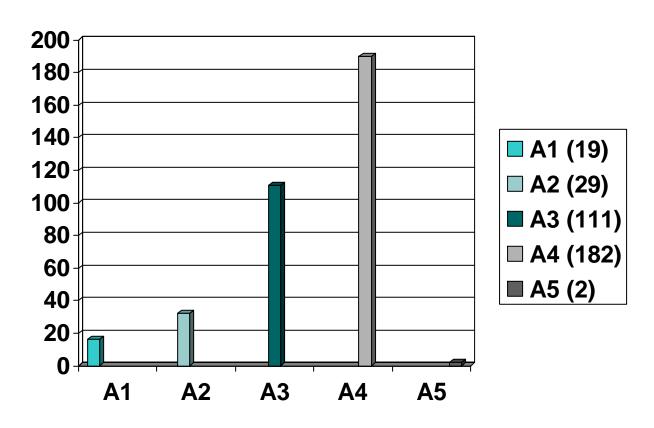
Other CHS

Coke Oven Emissions – 1977

 Non-specific, total particulate matter during the destructive distillation of coal for production of coke.

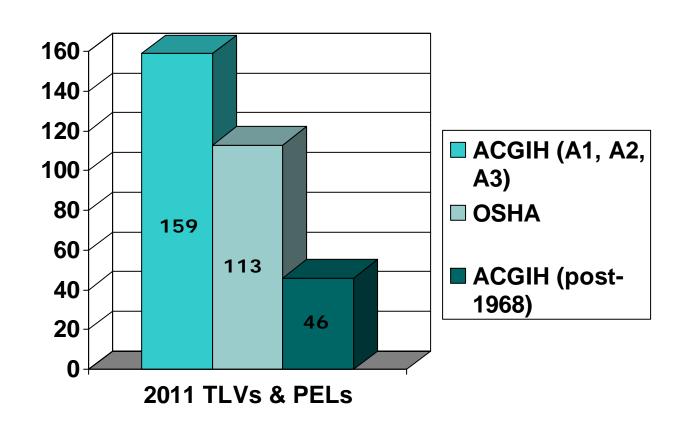
"13 Carcinogens" - No Airborne Limits

	<u>Substance</u>	Year Promulgated
0	4-Nitrobiphenyl	1974
0	Alpha-Naphthylamine	1974
0	Chloromethyl ether	1974
0	3,-Dichlorobenzidine (and salts)	1974
0	Bis-Chloromethyl ether	1974
0	Beta-Naphthylamine	1974
0	Benzidine	1974
0	4-Aminodiphenyl	1974
0	Ethyleneimine	1974
0	Beta-propiolactone	1974
0	2-Acetylaminofluorene	1974
0	4-Dimethylaminoazo-benzene	1974
0	N-Nitrosodimethylamine	1974

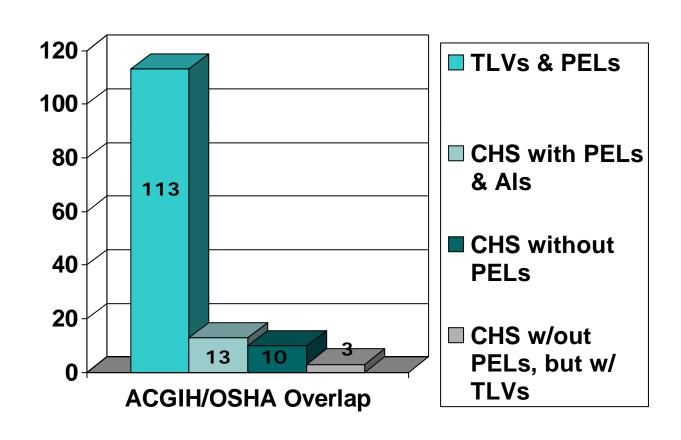

ACGIH Carcinogens

- ACGIH may propose/adopt carcinogen designation to a substance w/ or w/out numerical TLV change:
 - A1 = Confirmed Human Carcinogen
 - A2 = Suspected Human Carcinogen
 - A3 = Confirmed Animal Carcinogen with Unknown Relevance to Humans
 - A4 = Not Classifiable as a Human Carcinogen
 - A5 = Not Suspected as a Human Carcinogen

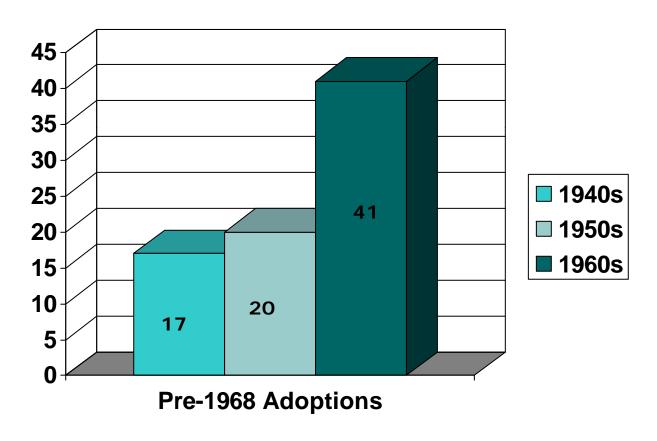
ACGIH Carcinogens


- Current count: 343/734 (~47%) TLVs have a carcinogen designation
- Almost all designations post-1970
 - Cancer latency periods (e.g. post WWII)
 - Health studies/review processes
 - Advances in science/epidemiology
- Substances now known or suspected to be cancer-causing weakly reflected in OSHA numerical PELs
 - Exception CHS

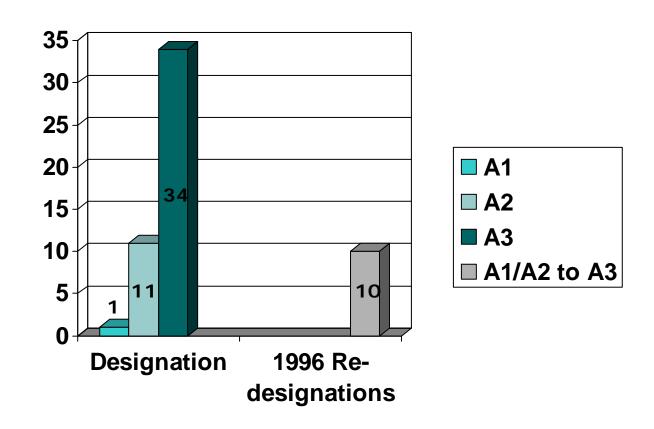
ACGIH Carcinogens



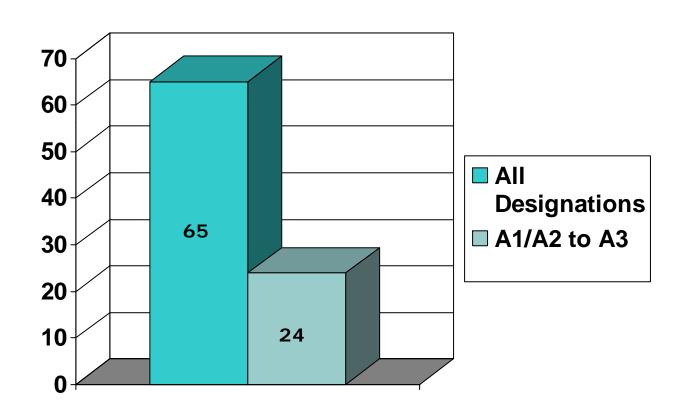
Distribution of Carcinogen Designations (of 734 TLVs)


ACGIH Carcinogens: A1, A2, A3

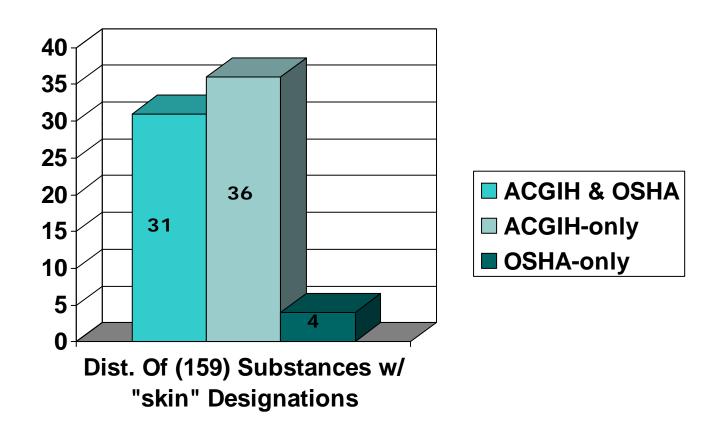
ACGIH Carcinogens: A1, A2, A3



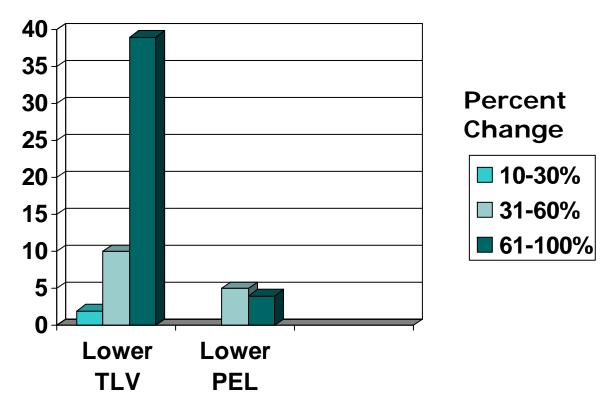
Decade PEL Value Adopted



- •Represents 78/159
- •12 Substances have same PEL/TLV values


ACGIH 46 Post-1968 Carcinogens

ACGIH 1996 Carcinogen Changes



"Skin" Designations

Note: 19/36 are post-1968 TLVs

TLV/PEL Values: Magnitudes of Differences

(Note: 60/159 comparable)

o Mo OELs:

- OSHA
 - o 15mg/m³ metal
 - 5mg/m³ soluble compounds
- ACGIH
 - 0.5mg/m³ (R)
 soluble
 compounds A3
 - 10mg/m³ (I)
 metal & insoluble
 compounds
 - 3mg/m³ (R)
 metal & insoluble
 compounds

o Considerations:

- 15mg/m3 PEL for metal/insoluble compounds est. in 1961
 - o TLV lowered to 10mg/m³ in 1971
 - 1989 Vacated PEL, proposed: 10mg/m³
- 5mg/m3 for soluble compounds est. in 1956
- 0.5mg/m3 (R) TLV & A3 designation first proposed in 1999, adopted 2001
 - A2 proposed in 2001, w/drawn in 2003 due to insufficient human data
- 3mg/m3 (R) for metalic & insoluble compounds also adopted in 2001

- o Is the Mo in soluble or insoluble form?
 - Depends upon oxidation
 - ∘ MoO₂ insoluble
 - ∘ MoO₃ soluble
- o Is respirable dust present?
 - Hot processes
 - Grinding performed
- Is this assessment a regulatory evaluation or health evaluation?

- Another wrinkle
 - Differences in sampling techniques & cassettes:
 - Total 37mm cc cassette
 - Inhalable IOM sampler
 - Respirable
 - Nylon cyclone per OSHA
 - Aluminum cyclone per ACGIH

Final Thoughts

- New paradigm for addressing exposure to substances
 - OSHA failure to update/add PELs over 40 years long standing issue in OH&S profession
 - Complexities, challenges & ethical dilemmas faced by occ. hygienists
 - TLVs & other OELs help, but not the whole solution