Lessons Learned:Moving Beyond Setting Occupational Health Standards One Chemical at a Time

Molly Jacobs University of Massachusetts, Lowell Lowell Center for Sustainable Production

Outline

- Review limitations in OSHA's system of establishing occupational exposure limits to toxic substances
 - Diacetyl
 - Methylene chloride & 1-bromopropane
- 2. Outline a series of potential solutions forward
 - Programmatic
 - System–level changes

OSHA health standards

- Early 1970s: Interim 450 PELs based on ACGIH's TLVs; 480 PELs total
- 1970-2011: ~30 permanent health standards, 20 considered comprehensive
- Existing PELs vastly outdated: based on science primarily from the 1940s-1960s
- Today: ~85,000 chemicals registered for use in US; ~2500 high production volume chemicals

Notable attempts to fix OSHA's health standard-setting problem

- 1980 Generic Carcinogen Policy
 - Streamlined the rule making process by setting science policy
 - Set priorities for regulation
 - Speed-up setting health standards: 10 substances selected for comprehensive rule-making at any one time
- 1989 Air Contaminants Standard
 - Based again on ACGIH's TLVs: 212 additional PELs and 164 PELs updated

Supreme Court's benzene decision

- 1978: OSHA issued 1ppm PEL for benzene
- 1978: Challenged by American Petroleum Institute [no risk below the old limit of 10ppm]
- 1980: Supreme Court vacates the OSHA standard. OSHA must establish:
 - 1. a workplace is unsafe due to the presence of a "significant risk" to workers
 - 2. that this risk can be eliminated or lessened by the promulgation of a standard or change in a standard

Supreme Court:

 "If the odds are one in a billion that a person will die from cancer by taking a drink of chlorinated water, the risk clearly could not be considered significant. Yet on the other hand, if the odds are one in a thousand that regular inhalation of gasoline vapors that are two percent benzene will be fatal, a reasonable person might well consider the risk significant and take appropriate steps to decrease or eliminate it."

Benzene decision impacts

- OSHA "stays" the Generic Carcinogen Policy
- 11th Circuit Court of Appeals vacates the Air Contaminants Standard
- OSHA standard rule-making practice: Accepting risks for workers that are magnitudes higher than EPA accepts for the general public
- OSHA's interpretation of the benzene decision:
 - 1 cancer death per 1,000 workers exposed to a specific agent over a lifetime
- For comparison, EPA:
 - 1 cancer death per 100,000 or 1,000,000 individuals

Lessons learned: Case example, diacetyl

Diacetyl- artifical butter flavoring

- 2000, cluster of *bronchiolitis obliterans* among workers in a popcorn manufacturing plant
- Mixing area employees exposure to diacetyl: 17– 1,000x higher than other plant employee exposures.
 - Deep lung damage associated with where workers spent most their time*
- No OSHA PEL;

- FDA: "generally recognized as safe" yet no inhalation tests conducted
- NIOSH RELs/OSHA PELs: fewer than 5% of the 1,037 flavoring ingredients
- Regulation by litigation: substitutes, yet safer?

*Kriess et al. N Engl J Med 2002;347:330.

Lessons learned: Case example, methylene chloride & 1-bromopropane

MeCl2 & 1-bromopropane

- 1997 MeCl2 OSHA permanent health standard
 - Standard considered a success story
 - Prompted by NTP evidence of carcinogenicity in 1985
 - Took 12 years to finalize the MeCl2 rule
 - Residual life time risk of cancer at the new PEL 3.6 per 1,000
 - Exposure reduction strategies: dependent on engineering controls rather than source reduction
 - Yet regulations by multiple fed. agencies prompted employers to substitute

MeCl2 & 1-bromopropane

I-Bromopropane

- Virtually untested substitute in late 1990s; marketed as "green" "non hazardous" substitute for restricted chlorinated solvents
- No OSHA/EPA regulations

- Within a years of use evidence emerged regarding neurotoxicity*
- NTP panel: reproductive/developmental toxicant**
- NTP carcinogenicity testing: potentially more carcinogenic than MeCl2***

*Int Arch Occup Environ Health. 2005;78:79.

See: <u>http://cerhr.niehs.nih.gov/evals/bromopropanes/1-bromopropane/1BP_monograph.pdf</u>. *see: <u>http://ntp.niehs.nih.gov/index.cfm?objectid=4E0C03A9-F1F6-975E-79F1E370B9027815</u>.

Summary of lessons-learned

- Too many chemicals to regulate one at a time
- Supreme Court's benzene decision: significance of risk for <u>each individual</u> chemical
- Rule making process long & tedious: workers remain at risk while rule making occurs
- Disjointed US system of chemicals management
- OSHA standards: focus on "risk management" via engineering controls
- Source reduction/substitution occurring at employers' discretion

Proposed solutions

- OSHA: example of considerations
 - Legislative
 - New authority to adopt existing consensus standards
 - Use of "general duty clause"
 - Rule making: Generic standards
 - Injury & Illness Protection Program (I2P2)
 - Employers/employees to identify & assess workplaces hazards
 - identify & implement hazard prevention & control program
 - 1989 MA TURAct demonstrates that employer-based planning works to reduce toxics use
 - Technology based standards (EPA's general approach)
 - Control/hazard banding
 - A single *control* technology or strategy is matched with a single *band*, or range of exposures/hazards

Control banding example

Band No.	Range of exposure concentrations	Hazard group	Control
1	>1 to 10 mg/m³ dust >50 to 500 ppm vapor	Skin and eye irritants	Use good industrial hygiene practice and general ventilation.
2	>0.1 to 1 mg/m ^s dust >5 to 50 ppm vapor	Harmful on single exposure	Use local exhaust ventilation.
3	>0.01 to 0.1 mg/m³ dust >0.5 to 5 ppm vapor	Severely irritating and corrosive	Enclose the process.
4	<0.01 mg/ m³ dust <0.5 ppm vapor	Very toxic on single exposure, reproductive hazard, sensitizer*	Seek expert advice.

Additional systems-level solutions

- Comprehensive Chemicals Policy Reform
 - Example EU's Registration, Evaluation, and Authorization of Chemicals (REACH)
 - Encouraging alternatives assessments (source reduction)
 vs. risk management (focus on engineering controls)
- Prevention through Design (PtD)
 - We designed the hazards (little regard to toxicity when chemicals initially engineered) so we can design them out
 - Encourages innovation & breaks free of the false dichotomy of safety vs. profit
 - NIOSH's initiative
 - Example: green chemistry

12 Principles of Green Chemistry (sample)

- Design chemicals and products to be effective w/ little or no toxicity
- Prevent waste that requires treatment or clean-up
- Develop less hazardous ways to synthesize chemicals
- Use renewable raw materials
- Design chemicals to break down after use

No worker should fall ill simply by showing up to work and doing the job asked of them

