Hot Topics in Liver Disease 2019

Steve Fern, D.O. Specialists in Gastroenterology Saint Louis, Missouri UNECOM 1989

DISCLOSURES

No disclosures

Who AM I?

Professionals

OBJECTIVES

What's New in HCV?

What about NAFLD/NASH?

What's New in Cirrhosis?

- General Evaluation
- Managing Complications
 - Varices
 - Thrombocytopenia
 - Hepatic Encephalopathy

OBJECTIVES

What's New in HCV?

What about NAFLD/NASH?

What's New in Cirrhosis?

- General Evaluation
- Managing Complications
 - Varices
 - Thrombocytopenia
 - Hepatic Encephalopathy

Hot Topics in Liver Disease 2019

Acute Hepatitis C on the Rise

CDC (2013-2016): Estimated HCV Prevalence Among Adults in the United States

- HCV antibody positive (including past and current infection)
 - Number: 4.1 million (95% CI 3.4-4.9)
 - Prevalence: 1.7% (95% CI 1.4-2.0)
- HCV RNA positive (including current infection)
 - Number: 2.4 million (95% CI 2.0-2.8)
 - Prevalence: 1.0% (95% CI 0.8-1.1)

Estimated adult US population in 12/2016: 245 million.

2003-2010

2013-2016

Datasets analyzed: National Health and Nutrition Examination Survey (noninstitutionalized civilian population). Combination of literature reviews and population size estimation approaches (incarcerated people, unsheltered homeless people, active-duty military personnel, and nursing home residents).

Hofmeister MG, et al. Hepatology. 2019 Mar;69(3):1020-1031. doi: 10.1002/hep.30297. Epub 2018 Nov 6.

Changing Trends in Acute HCV in the US (2001-2016)

- New acute HCV infection in 2016
 - Reported cases (n=2967)
 - Estimated (n=41,200, adjusted for underascertainment and under-reporting)
- 3.5-fold increase in new cases since 2010
 - Reflects new infections associated with rising rates of injection-drug use
- Most newly acquired acute HCV infections occurred among young, white, PWIDs, who live in non-urban areas (i.e., Appalachian, Midwestern, and New England states)

Acute HCV Rate in US 2001-2016

CDC. Surveillance for viral hepatitis - United States, 2016. https://www.cdc.gov/hepatitis/statistics/2016surveillance/index.htm

Populations at Risk

Hot Topics in Liver Disease 2019

WHO Goal: Global Elimination of Viral Hepatitis

Global Health Sector Strategy:

Eliminate Viral Hepatitis as a Major Public Health Threat by 2030

Impact Targets

Reduction in new infections by 90%

Reduction in deaths by 65%

Programmatic Targets

90%	80%	90%	100%	90%
of people infected are diagnosed	of people diagnosedare treated	coverage of BD and B3 doses (PAHO: 95%)	of blood products are safe	of injections in health facilities are safe

12

HCV No Longer a Disease Limited to Baby Boomers

Data for New York State (excluding NYC). https://www.health.ny.gov/statistics/diseases/communicable/index.htm.

HCV Screening Is Straightforward: Algorithm for Screening/Diagnosis

Modified from http://www.cdc.gov/hepatitis/HCV/PDFs/hcv_flow.pdf. Ghany MG, et al. Hepatology. 2011;54(4):1433-1444.

OBJECTIVES

What's New in HCV?

What about NAFLD/NASH?

What's New in Cirrhosis?

- Thrombocytopenia
- Hepatorenal Syndrome
- Hepatic Encephalopathy

NAFLD Encompasses the Entire Spectrum of Fatty Liver Disease

NAFLD

Disease of hepatic fat accumulation absent alcohol consumption, hereditary disorders, or steatogenic medication use

Carlo Carlo	
the state of the second s	
The Contraction	
the second se	A A TOPEN TOPEN

Normal I

NAFL

- >5% hepatic steatosis
- No evidence of hepatocyte injury (ballooning) or fibrosis

NASH

- Progressive type of NAFLD
- >5% hepatic steatosis ± inflammation with hepatocyte injury (ballooning) ± fibrosis

NASH Cirrhosis

Cirrhosis + current or previous histological evidence of steatosois

NAFLD in the United States

30% to 40% of Americans have NAFLD¹

3% to 12% of Americans have NASH¹

#2

leading indication for liver transplantation in the US after HCV²

#3

most common cause of HCC in the US³

\$103 billion

estimated annual direct costs of NAFLD⁴

NIDDKD. Available at https://www.niddk.nih.gov/health-information/liver-disease/nafid-nash/definition-facts. Accessed May 18, 2018.
 Wong RJ et al. Gastroenterology. 2015;148:547-555.
 Mohamad B et al. Hepatol Int. 2016;10:632-639. 4. Younossi ZM et al. Hepatology. 2016;64(5):1577-1586.

Natural History of NAFD and NASH

Disease Progression in NAFLD Attributed to Multiple Hits

Risk Factors Associated with NAFLD

Common conditions with established association	Other conditions associated with NAFLD
Obesity	Hypothyroidism
T2DM	Obstructive sleep apnea
Dyslipidemia	Hypopituitarism
Metabolic Syndrome	Hypogonadism
Polycystic ovarian syndrome	Pancreatoduodenal resection
	Psoriasis

Obesity is the most common and welldocumented risk factor for NAFLD

AASLD Requirements for Diagnosing NAFLD

AASLD Guidance for Noninvasive Identification of Patients At High Risk for NASH

Decision Aids

Predicts the Metabolic useful syndrome

presence of SH and in targeting patients for liver biopsy

NFS FIB-4 index ELF

Useful for identifying NAFLD patients with higher likelihood of bridging fibrosis (stage 3) or cirrhosis (stage 4)

Imaging

VCTE

Vibration-controlled Transient Elastography

MRE

Magnetic Resonance Elastography

Useful for identifying advanced fibrosis in patients with NAFLD

Other Causes of Hepatic Steatosis

Examples of other causes of fatty liver

- Excessive alcohol consumption
- Medications

Malnutrition

Parenteral nutrition

Examples of other liver diseases that can present with steatosis

- Hepatitis C, acute hepatitis D
- Wilson disease
- Hemachromatosis

- Lipodystrophy
- Lysosomal acid lipase deficiency

NAFLD Disease Progression

Ludwig J, et al. Mayo Clin Proc. 1980;55(7):434-438.
 Kleiner DE, et al. Hepatology. 2005;41(6):1313-1321.
 McPherson S, et al. J Hepatol. 2015;62:1148-1155.
 Singh S, et al. Clin Gastroenterol Hepatol. 2015 Apr;13(4):643-54.

*N = 108 pts with NAFL/NASH and median 6.6 yrs follow-up (data from serial biopsies).

Noninvasive Diagnosis of Liver Fibrosis in NAFLD

Clinical or Lab	Imaging	
Simple	Complex	Elastography
 AST/platelet ratio index FIB-4 index NAFLD fibrosis score BARD score 	 NASH <i>FibroSure</i> ELF HepaScore 	 VCTE <i>FibroScan</i> MR elastography ARFI

Liver Biopsy Is the Gold Standard for Characterizing Liver Histological Alterations in NAFLD

AASLD Recommendation for When to Obtain Livery Biopsy in NAFLD

Fibrosis Staging in NASH

F1: Perisinusoidal

F3: Bridging Fibrosis

F2: Perisinusoidal + Portal

F4: Cirrhosis

Slide credit: clinicaloptions.com

Outline

- Current Best Practices in NASH Management
 - Lifestyle Changes
 - Pharmacologic
 - Surgical Management Strategies
- Investigational Therapies
 - Phase III
 - Phase II

Effect of Diet in NAFLD

- Limiting total caloric intake is ideal and more important than aiming for a specific nutrient composition
- My diet recommendation: limit processed carbs!
 - White/brown bread, rice
 - White/orange potatoes
 - Flour/corn tortillas
 - Pizza/pasta
 - Chips
 - Fructose-containing sodas and juices

Hannah WN, et al. Dig Dis Sci. 2016;61:1365-1374.

Percentage of Weight Loss Associated With Histological Improvement in NAFLD

Hannah WN, et al. Clin Liver Dis. 2016;20:339-350.

Slide credit: clinicaloptions.com

Effect of Exercise on NAFLD

- Physical inactivity linked to
 - Increased body weight
 - Central adiposity
 - Insulin resistance
 - Increased risk of metabolic syndrome
 - NAFLD
 - Severity of NASH

Hannah WN, et al. Dig Dis Sci. 2016;61:1365-1374.

Lifestyle Recommendations for Treating NASH

Caloric intake reduction ≥30% or ~750-1,000 kcal/day improved insulin resistance and hepatic steatosis

Weight loss

of 3% to 5% can improve steatosis, but 6% to 10% is needed to improve NASH/fibrosis

Exercise

alone may reduce steatosis, but effect on other histologic features unknown

No heavy alcohol consumption

Insufficient data to guide recommendations regarding nonheavy alcohol consumption

My Recommendation

Moderate intensity exercise

Sustained weight loss

Current Status of Pharmacologic Treatments for NASH

- No FDA-approved therapies for NASH
- Currently available therapeutics with proven efficacy
 - Vitamin E
 - Pioglitazone
- More limited data
 - Pentoxifylline
 - Liraglutide

Targeting Pathophysiologic Processes

NASH Treatments Currently in Phase III Investigations

Agent	MoA	Trial	N	Primary Endpoint(s)	Time Point
Cenicriviroc	CCR2/5 antagonist	AURORA ^[1]	2000	≥ 1 stage fibrosis improvement with no NASH worsening	12 mos
Elafibranor	PPARα/σ agonist	RESOLVE-IT ^[2]	2000	Resolution of NASH with no fibrosis worsening	72 wks
Obeticholic acid	FXR agonist	REGENERATE ^[3]	2370	≥ 1 stage fibrosis improvement with no NASH worsening; resolution of NASH with no fibrosis worsening	18 mos
		REVERSE ^[4]	540	\geq 1 stage fibrosis improvement with no NASH worsening	12 mos
Selonsertib	ASK1 inhibitor	STELLAR 3 ^[5]	808	≥ 1 stage fibrosis improvement with no NASH worsening; event-free survival	48 wks
		STELLAR 4 ^[6]	883	NASH with compensated cirrhosis	240 wks

Phase III/IV studies use adaptive design

- Histologic endpoints for Subpart H conditional approval
 - Clinical endpoints for full approval

1. NCT03028740. 2. NCT02704403. 3. NCT02548351. 4. NCT03439254. 5. NCT03053050. 6. NCT03053063.

Bariatric Surgery Improves Clinical Parameters

- Prospective study following bariatric surgery in pts who are severely obese (N = 381) with ≥ 1 comorbidity, no excessive drinking < 2 yrs, no chronic liver diseases
 - Liver biopsies assessed by 2 blinded reviewers for fibrosis (F0-4), NAFLD scoring to determine NASH (≥ 3, probable or definite; ≥ 5, definite)

Parameter	Before Surgery	After 5 Yrs	P Value
Diabetes mellitus, n (%)	94 (24.8)	24 (10.8)	.00001
Arterial hypertension, n (%)	185 (48.8)	85 (37.0)	.0005
Serum triglycerides, mean (g/L)	1.67	1.06	.00001
Fasting glucose, mean (g/L)	1.18	0.94	.00001
Insulin resistance index, mean	3.2	2.83	.00001
ALT, mean (IU/L)	30.1	22.8	.00003
GGT, mean (IU/L)	39.9	29.2	.00001

Mathurin P, et al. Gastroenterology. 2009;137:532-540.

Slide credit: clinicaloptions.com

Take-Home Points

- Lifestyle changes are the foundation of any treatment plan
 - Weight loss ≥ 3% to 10% associated with histologic improvement in NAFLD
- AASLD guidance cites evidence for vitamin E (NASH without diabetes), pioglitazone (NASH with or without diabetes), bariatric surgery
- Preliminary evidence for improvement in fibrosis with some investigational therapies

OBJECTIVES

What's New in HCV?

What about NAFLD/NASH?

What's New in Cirrhosis?

- General Evaluation
- Managing Complications
 - Varices
 - Thrombocytopenia
 - Hepatic Encephalopathy

US Hospital Discharges Due to Cirrhosis Are Increasing

*ICD-9-CM diagnosis codes 571.2. 571.5, 571.6; all listed diagnoses. HCUPnet, Healthcare Cost and Utilization Project. Agency for Healthcare Research and Quality, Rockville, MD. http://hcupnet.ahrq.gov. Accessed January 2014.

Cirrhosis Is the Final Pathway for Most Chronic Liver Diseases

deposition= fibrosis \rightarrow cirrhosis

Decompensation/ liver failure

Hepatocellular carcinoma

Liver transplantation

Histology image obtained from http://en.wikipedia.org/wiki/Cirrhosis. Accessed March 26, 2018. Ge PS, Runyon BA. N Engl J Med. 2016;375:767-777.

Compensated Cirrhosis May Be Difficult to Recognize

- Most patients remain asymptomatic until decompensation occurs
- Clues may be overlooked
 - Thrombocytopenia
 - Muscle wasting
 - AST>ALT without alcohol consumption
 - Liver enzymes are frequently normal
- Etiology may be remoted or subtle
 - Prior alcohol use
 - Uncontrolled diabetes mellitus and obesity

Tsochatzis EA et al. Lancet. 2014;383:1749-1761; Heidelbaugh JJ, Bruderly M. Am Fam Phys. 2006;74:756-762.

Survival Is Significantly Longer in Compensated Cirrhosis Compared with Decompensated Cirrhosis

Survival According to Decompensation At Diagnosis

>12 year median survival

in patients with compensated cirrhosis

D'Amico G et al. J Hepatol. 2006;44:217-231.

Child-Pugh Score: A Prognostic Score in Cirrhosis

	Points		
	1	2	3
Encephalopathy	None	Precipitant	Recurrent
Ascites	None	Controlled	Refractory
PT (sec prolonged) or INR	<4 <1.7	4-6 1.7-2.3	>6 >2.3
Bilirubin	<2	2-3	>3
Albumin	>3.5	3.0-3.5	<3.0

38

Classification of Cirrhosis Severity Model for End Stage Liver Disease Score

- Calculated from 3 variables:
 - International normalized ratio (INR; calculated from prothrombin time)
 - Bilirubin
 - Serum creatinine
- The MELD score equation:
 - [9.57 x log creatinine mg/dL + 3.78 x log bilirubin mg/dL + 11.20 x log INR + 6.43 (constant for liver disease etiology)]
- Eliminates subjectivity of encephalopathy and ascites evaluation used in Child Pugh Score

3 Month Mortality Risk Based on MELD Score

Murray KF, Carithers RL. Hepatology. 2005;41:1-26; Wiesner R et al. Gastroenterology. 2003;124:91-96.

Complications of Cirrhosis: Decompensated Cirrhosis

History of Present Illness – June 2018

47 year old male with decompensated alcoholrelated cirrhosis

HISTORY	MEDICATIONS	LABS	PROGRESS	OTHER
& PE				

- 47 year old gentleman with decompensated alcoholrelated cirrhosis returns to clinic after being recently admitted and banded for bleeding esophageal varices.
 - Pertinent admission labs:
 - HB 5.2, PLT 32, INR 1.4, TB 1.2
 - Required 6 bands.
 - Transfused PRBCs and Platelets
- Follow up outpatient endoscopy with additional banding recommended.

Esophageal Varices

Management of Acute Hemorrhage

- Patients with suspected acute variceal hemorrhage require intensive-care unit setting for resuscitation and management
- Acute GI hemorrhage requires:
 - Intravascular volume support
 - Blood transfusions
 - Maintaining hemoglobin of ~7 g/dL
- Institute short-term (7-day) antibiotic prophylaxis
 - Ceftriaxone 1 gm/d is preferred
- Initiate therapy with octreotide (or its analogs) (2-5 days)
- Perform EGD within 12 hours; treat with endoscopic band ligation
- Rescue therapy: Emergent TIPS, balloon tamponade, esophageal stent placement

Garcia-Tsao et al. Hepatol. 2017.

Thrombocytopenia in Cirrhosis

- Be suspicious when platelet count <100,000 x 10⁹/L
- Decreased hepatic production of thrombopoietin is a critical factor in the development of thrombocytopenia in cirrhosis
- Prevalence and severity of thrombocytopenia correlate with and parallel the severity of underlying liver disease, particularly, the extent of fibrosis

Thrombocytopenia in CLD

- Thrombocytopenia is a common problem in patients with cirrhosis (platelets <100,000)
 - Estimated to affect up to 70% of CLD patients
 - Extent worsens with severity of portal hypertension and disease
 - Patients may be ineligible for elective surgical or diagnostic procedures due to risk of bleeding
 - Increases risk of mortality
 - Increases risk of poor clinical outcomes

Mitchell O, et al. Hepatic Medicine: Evidence and Research. 2016;8:39-50; Maan, et al. Drugs. 2015;75(17):1981-92; Giannini EG. Aliment Pharmacol Ther. 2006;23:1055-65.

Relative Bleeding Risk Associated with Common Medical Procedures Performed in Patients with Chronic Liver Disease

Low

- Thoracentesis
- Paracentesis
- Endoscopy
- Upper GI endoscopy
 - ± biopsy
 - ± variceal banding ± sclerotherapy
- Colonoscopy ± polypectomy biopsy

Medium

- Liver biopsy
- Bronchoscopy ± biopsy
- Ethanol ablation
- Chemoembolization for HCC

High

- Biliary interventions
- Dental procedures
- Transjugular intrahepatic portosystemic shunt
- Laparoscopic interventions
- · Nephrostomy tube placement
- Radiofrequency ablation
- Renal biopsy
- Vascular catheterization

Terrault N, et al. Hepatology. 2017;66(suppl S1):124A-125A. Abstract 217.

Guideline Recommendations for Appropriate Platelet Levels Based on Procedure

Guideline	Year	Transfusion Recommendations and Cited Evidence
American Association of Study of Liver Diseases (AASLD)	2009	 Platelet transfusion should be considered when levels are less than 50-60x10⁹/L (this applies whether one is attempting liver biopsy transcutaneously or transvenously)
American Society of Gastrointestinal Endoscopy (ASGE) [Gastroenterologist]	2012	 Platelet threshold 20x10⁹/L for diagnostic endoscopy; 50x10⁹/Lif biopsies performed

Rockey et al. Hepatology. 2009;49(3):1017-1044; Ben-Menachem et al. Gastrointest Endosc. 2012.

Current Landscape in Patients with Thrombocytopenia and CLD

- Patients require 1-3 procedures annually
- Different procedures are associated with different risks of bleeding
 - Procedures are required to clinically manage patients with CLD
 - Thrombocytopenia can lead to serious uncontrolled bleeding in these patients negatively impacting clinical care
 - Prolonged hospitalizations
 - Serious complications
 - Poor clinical outcomes
- Historically, the only treatment option was platelet transfusion

Szczepiorkowski ZM and Dunbar NM. Hematology Am Soc Hematol Educ Program. 2013;2013:638-44; Lin Y and Foltz LM. BCMJ. 2005;47(5):245-248.

Treatment Options for Severe Thrombocytopenia in Chronic Liver Disease

- Standard
 - Platelet transfusions
 - Splenic artery embolization
 - Splenectomy
 - Transjugular intrahepatic portosystemic shunts
- Thrombopoietin Receptor Agonists
 - FDA-approved in 2018: avatrombopag and lusutrombopag
 - Oral medications

Avatrombopag

Conclusions

- Patients with cirrhosis often need multiple invasive procedures
- Thrombocytopenia is common in patients with cirrhosis
- Severe thrombocytopenia places patients at risk of bleeding with invasive procedures
- Use of platelet transfusion to mitigate the risk is cumbersome and can be associated with adverse events
- The use of TPO agonists significantly increases platelet counts and can avoid the need for platelet transfusion

Patient Case

67-yr-old man admitted for OHE for the first time HISTORY & PE

HPI

 History of NASH and noted cirrhosis based on abdominal US about 3 years ago

MEDICATIONS

- Noted melena for 3 days
- His spouse noted that he has become confused in the last few days and became unresponsive on the day of admission

Social History

LABS

 Used to drink heavily as an auto plant worker when he was young

PROGRESS

NOTES

OTHER

- Quit drinking and smoking for the last 12 years
- · Lives with wife in an apartment
- · Wife has chronic medical issues

Patient Case (cont.)

67-yr-old man admitted for OHE for the first time

HISTORY MEDICATIONS LABS		GRESS OTHER DTES
PE	BP	110/60 mm Hg
 Confused, disoriented 	PR	110/min
 Anemic, but not icteric 	RR	20/min
 Positive flapping, tremor No ascites, not tender Trace edema 	BMI	35 kg/m ²
 Stool tarry and hemoccult (+) 		

HE Symptoms Can Be Subtle Should Be Considered in Any Patient with Cirrhosis

HE = hepatic encephalopathy

Vilstrup, H et al. Hepatic encephalopathy in chronic liver disease. 2014; Practice Guideline by the American Association for the Study Of Liver Diseases and the European Association for the Study of the Liver. *Hepatology*. 60: 715–735.

No Role for Ammonia Testing in HE

- "Increased blood ammonia alone does not add any diagnostic, staging, or prognostic value for HE in patients with CLD. A normal value calls for diagnostic reevaluation (GRADE II-3, A, 1)"1
- Except in acute liver failure, ammonia level>200 µmol/L is predictive of poor outcome²
- HE is a clinical diagnosis

Treatment Goals for OHE

- Provision for supportive care
- Identification and removal of precipitating factors
 - Infection, GI bleed, dehydration
- Reduction of nitrogenous load from the gut
- Correct electrolyte abnormalities
- Assessment of the need for long-term therapy
 - Control of potential precipitating factors
 - Higher likelihood of recurrent encephalopathy
 - Assessment of the need for liver transplantation

Precipitating Factors for HE

Increased ammonia production UGI hemorrhage Excessive dietary protein Blood transfusion Dehydration/electrolyte imbalance Constipation

Portosystemic shunts Spontaneous latrogenic (eg, TIPS)

Other

Drugs (eg, opioids, benzodiazepines) Infections (eg, SBP) Malignancy (eg, hepatoma)

AASLD Recommends 4-Pronged Approach to Treating OHE*

Current Therapy Options for HE

Agent	Drug Class	Indication	
Lactulose ¹	Poorly absorbed disaccharide	 Decrease blood ammonia concentration Prevention and treatment of portal-systemic encephalopathy 	
Rifaximin ²	Non-aminoglycoside semi- synthetic, nonsystemic antibiotic	Reduction in risk of OHE recurrence in patients ≥18 years of age	
Neomycin ³	Aminoglycoside antibiotic	Not to be used, renal and ototoxic risk	
Metronidazole ¹	Synthetic antiprotozoal and antibacterial agent	Not approved for HE	
Vancomycin ¹	Aminoglycoside antibiotic	Not approved for HE	

1. USNLM. DailyMed. Available at https://dailymed.nlm.nih.gov/dailymed. Accessed March 22, 2018; 2. Xifaxan (rifaximin) [prescribing information]. Valeant Pharmaceuticals North America LLC; Bridgewater, NJ; 2018; 3. Mullen KD et al. Semin Liver Dis. 2007;27(Suppl 2):32-47.

Prevention of Overt HE (OHE)

- Lactulose is recommended for prevention of recurrent episodes of HE after the initial episode (GRADE II-1, A, 1)
- Rifaximin as an add-on to lactulose is recommended for prevention of recurrent episodes of HE after the second episode (GRADE I, A, 1)
- Routine prophylactic therapy (lactulose or rifaximin) is not recommended for the prevention of post-TIPS HE (GRADE III, B, 1)
- Under circumstances where the precipitating factors have been well controlled (i.e., infections and VB) or liver function or nutritional status improved, prophylactic therapy may be discontinued (GRADE III, C, 2)

Conclusions

- Hepatic encephalopathy is an economic and social burden
 - Increased burden is realized not only by patients but also experienced by caregivers
- Hepatic encephalopathy is an important cause of hospital readmission
 - To avoid the "revolving door", treat after discharge
- Lactulose and rifaximin are important for secondary prophylaxis

HCC Screening: Patients with Cirrhosis

Major Guidelines Recognize the Importance of Routine Surveillance in High-Risk Populations

Guidelines		
US +/- every 6 months		
US every 6 months		
AFP + US every 6 months		
AFP + US every 6-12 months		
High-risk: US every 6 months + AFP/DCP/AFP-L3 every 6 months Very High-risk: US every 6 months + AFP/DCP/AFP-L3 every 6 months + CT/MRI (optional) every 6-12 months		

AFP=alpha-fetoprotein; AFP-L3=Lens culinaris agglutinin-reactive fraction of AFP; CT=computerized tomography; DCP=des-y-carboxyprothrombin; MRI=magnetic resonance imaging; US=ultrasound.

1.Marrero JA et al., Hepatology, 2018; 68(2): 723-750; 2. EASL, EORTC. J Hepatol. 2012;56(4):908-943; 3. Omata M et al. Hepatol Int. 2010;4(2):439-474; 4. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Hepatobiliary Cancers v1.2016. © National Comprehensive Cancer Network, Inc. 2016. All rights reserved. Accessed February 10, 2016; 5. Kokudo N et al. Hepatol Res. 2015;45.

- Further work up for advanced liver disease if platelets <100,000 x 10⁹/L
- Don't rule out advanced liver disease if LFTs WNL
- Order INR in all patients with jaundice
- Order upper endoscopy if upper GI bleed
- Blood ammonia levels not important if HE is suspected
- Order abdominal US if no evidence of one within the past 6 months in all patients with advanced liver disease

Hot Topics in Liver Disease 2019

Thanks!!

QUESTIONS??