Non-Opioid Pain Management: In the ED and Beyond

Craig P. Worby, PharmD BCCCP BCPS **Clinical Lead Pharmacist – Emergency Medicine Dartmouth Hitchcock Medical Center**

Objectives

- Describe the pathophysiology of pain
- management
- Analyze supporting literature for non-opioid pain options
- patient case

Compare and contrast alternatives to opioids for pain

Recommend appropriate medication therapy given a

What is Covered

- Strategies and approaches to acute pain in ED
- + ibuprofen
- New data on ketorolac
- Ketamine
- Intravenous lidocaine

Paradigm shifts in perceptions of pain management New data on combination therapy of acetaminophen

What is Not Covered

- ICU Pain Management
- Neuropathic Pain
- Chronic Pain
- Cancer Pain

imagine

Epidemiology

- opioids
- Percentage of ED visits in which an opioid is
- visit

 33,091 overdose deaths involving an opioid in 2015 • ED only accounts for 4.7% of opioid prescriptions, but is frequently where patients are first introduced to

prescribed rose from 20.8% in 2001 to 31.0% in 2010 17% of patient's prescribed an opioid for acute pain were still taking the medication 1 year after initial ED

Combatting the Epidemic

- Prevent new cases of addiction
 - Keep opioid naïve patients naïve
- Balance benefit of pain relief with risk of addiction
 - Identification of high risk patients
- Shared understanding with patient on goals
 - Goal to reduce pain enough to function, not eliminate
- Acute pain improves within days Only 2-3 days of opioids is needed

Red Flags for Opioid Abuse Potential

- Adolescents and young adults
- History of substance use (including tobacco)
- Social isolation or dysfunction
- Existing psychiatric disease
- Concomitant use of sedatives

PHYSIOLOGY OF PAIN

5 PHASES OF ADAPTIVE PAIN

TRANSDUCTION CONDUCTION TRANMISSION PERCEPTION **MODULATION**

NMDA RECEPTORS OPIOID RECEPTORS

PAIN MANAGEMENT **ACETAMINOPHEN + IBUPROFEN**

Acetaminophen + Ibuprofen

- Possible synergistic effect by decreasing pain through multiple mechanisms
- Combination used in Australia, New Zealand, and Europe Limited data to date – postoperative and dental pain
- Advantages
 - Cost-effective
 - Limited adverse effects
- Disadvantages
 - Perception & guidance

Hot off the Press

JAMA | Original Investigation **Analgesics on Acute Extremity Pain** in the Emergency Department A Randomized Clinical Trial

Andrew K. Chang, MD, MS; Polly E. Bijur, PhD; David Esses, MD; Douglas P. Barnaby, MD, MS; Jesse Baer, MD

Effect of a Single Dose of Oral Opioid and Nonopioid

- Randomized, double-blind, treatment control
- 4 intervention groups
 - 400 mg ibuprofen + 1000 mg acetaminophen
 - 5 mg oxycodone + 325 mg acetaminophen
 - 5 mg hydrocodone + 325 mg acetaminophen
 - 30 mg codeine + 325 mg acetaminophen
- Primary: NRS pain score at 2 hours
- Secondary:
 - NRS pain score at 1 hour
 - Severity of pain none, mild, moderate, severe

Patients aged 21 to 64 presenting to ED with acute extremity pain

- 411 patients enrolled
 - 101 patients APAP + ibuprofen
 - 104 patients oxycodone + APAP
 - 103 patients hydrocodone + APAP
 - 103 patients codeine + APAP
- Notable demographics
 - 60% latino, 31% black

 - 62% presented with muscle strain or sprain 22% presented with extremity fracture

- 17.8% of patients received rescue analgesia
 - Predominantly oxycodone
- No difference in need observed between groups Post-hoc analysis in severe pain patients also displayed
- no difference
- Conclusion:
 - Acetaminophen 1000 mg + ibuprofen 400 mg showed no difference in pain reduction at 2 hours from opioid analgesia and may be an effective initial option for pain management

PAIN MANAGEMENT **KETOROLAC**

Ketorolac

- Potent NSAID analgesic
- Available in tablets and injectable for IV/IM
 - IV/IM 15 mg, 30 mg, 60 mg
 - PO 10 mg
- Advantages
 - Powerful analgesic
 - Many studied uses
 - Cost effective
- Disadvantages
 - Significant drug-drug interactions
 - Adverse effects
 - Nausea, vomiting, dyspepsia, dizziness
 - Nephrotoxicity
 - GI hemorrhage DOSE DEPENDENT

Ketorolac Dosing in ED

- Patients aged 18-65 presenting to ED with acute flank, score > 5
- Randomized, double-blind, single center
- 3 intervention groups
 - Ketorolac 10 mg
 - Ketorolac 15 mg
 - Ketorolac 30 mg
- Primary: reduction in NRS at 30 minutes
- Secondary: rates of adverse effects and patients requiring rescue analgesia

abdominal, musculoskeletal, or headache pain with NRS pain

Motov S, etal. Ann Emerg Med. 2017 imagine

Ketorolac Dosing in ED

- 240 patients enrolled
 - 80 patients received 10 mg
 - 80 patients received 15 mg
 - 80 patients received 30 mg
- Notable demographics
 - 45% male
 - 38% abdominal pain, 33% flank pain, 24% musculoskeletal pain

Motov S, etal. Ann Emerg Med. 2017 imagine

Mean Pain Scores (SD)

	Baseline	30 minutes	1 hour	2 hours	Significance to baseline
10 mg	7.73 (1.65)	5.13 (2.71)	4.56 (2.77)	3.77 (2.96)	Significant reduction
15 mg	7.54 (1.61)	5.05 (2.56)	4.09 (2.93)	3.60 (2.37)	Significant reduction
30 mg	7.80 (1.55)	4.84 (2.86)	4.11 (2.93)	3.44 (3.00)	Significant reduction
Signifiance between groups	Not significant	Not significant	Not significant	Not significant	

Motov S, etal. Ann Emerg Med. 2017 imagine

Ketorolac Dosing in ED

- No difference in use of rescue morphine
- No difference in rates of adverse effects
 - Dizziness (17.5%)
 - Nausea (11.6%)
 - No patients had a GI hemorrhage
- Conclusions

Patients experience no greater reduction in analgesia with higher doses of ketorolac compared to 10 mg dosing

Motov S, etal. Ann Emerg Med. 2017 imagine

PAIN MANAGEMENT **KETAMINE**

Ketamine

- Functions by binding to NMDA receptors in the CNS
 - Structurally related to PCP
- Racemic mixture
 - Both isomers are effective; however S enantiomer is more potent with fewer emergence reactions
- May be used as alternative or adjunct to opioids

Ketamine

- Studied uses:
 - Acute pain wide range of etiologies
 - Chronic pain
- Studied routes
 - IV, IM, Intranasal, SubQ
- Dosing
 - Subdissociative: 0.15 0.6 mg/kg IV bolus
 - Anesthetic: 1-4.5 mg/kg
- Duration of Effect
 - Peak at 15 minutes
 - May last up to 1-2 hours

Consider mixing in 50 mL NS and administer over 15 minutes (Motov, 2017)

Ketamine

- Advantages
 - Large therapeutic window
 - Lack of respiratory depression
- Disadvantages
 - setting
 - High rates of mild, transient adverse effects
 - Higher cost than opioids
 - State board of nursing

Limited data – small trials in ED and postoperative

Ketamine Adverse Effects

Subdissociative Dosing

Nausea

Dizziness

Feeling of unreality

Hallucination - rare

Mild elevations in blood pressure

Anesthetic Dosing

- Hypertension
- Tachycardia
- **Emergence reactions**
- Elevated intraocular pressures
- Elevations in intracranial pressures?

imagine

Avoid Ketamine

- Psychiatric illness
- Systolic blood pressure > 180 mmHg
- Heart rate > 150 beats per minute

Ketamine vs. Morphine Acute Pain

- Patients aged 18-55 presenting to ED with acute abdominal, flank, back, or musculoskeletal pain with a NRS > 5
- Prospective, randomized, double-blind
- 2 intervention groups
 - Ketamine 0.3 mg/kg
 - Morphine 0.1 mg/kg
- Primary: reduction in NRS at 30 minutes
- Secondary: Need for rescue analgesia at 30 minutes, 60 minutes, vital sign changes, adverse effects

Motov S, etal. Ann Emerg Med. 2015 imagine

Ketamine vs. Morphine Acute Pain

- 90 patients enrolled
 - 45 received ketamine
 - 45 received morphine
- Notable demographics
 - 62% female
 - 71% presented with abdominal pain
 - 18% presented with flank pain

Motov S, etal. Ann Emerg Med. 2015 imagine

Motov S, etal. Ann Emerg Med. 2015 imagine

Motov S, etal. Ann Emerg Med. 2015 imagine

Ketamine vs. Morphine Acute Pain

- 34.2)
- Adverse effects observed with ketamine
 - Dizziness (53%)
 - Disorientation (29%)
 - Mood changes (13%)
- effects and may need rescue opioids

 More patients required fentanyl rescue in ketamine at 120 minutes: 29% ketamine vs 12% morphine (95% CI 0.8-

• Conclusions: Ketamine is an effective pain medication; however it is associated with a high rate of mild adverse

Motov S, etal. Ann Emerg Med. 2015 imagine

Ketamine Additional ED Data

Indication	Ν	Route	Dose	Comparator	Result	Conclusion	Reference
Renal Colic	53	Nasal	1 mg/kg	Morphine IV 0.1 mg/kg	Ketamine reduced pain from 8.35 to 4.17 on VAS at 30 minutes	No difference in pain reduction seen between ketamine and morphine	Am J Emerg Med 2017
Headache	54	IV	0.3 mg/lg	Prochlorperazine 10 mg	Difference in pain of 18.1 on VAS at 45 minutes	Prochlorperazin e superior to ketamine	Ann Emerg Me 2017
Trauma pain	90	Nasal	1 mg/kg	Morphine 0.1 mg/kg IV or Morphine 0.15 mg/kg IM	Ketamine reduced pain by 56 mm on VAS at 40 minutes	No statistical difference between groups	BMC Emerg Med 2016
Moderate- severe pain	39	Nasal	0.7 mg/kg + 0.3 mg/kg rescue	None	100% of patients had at least a 20 mm reduction on VAS at 30 and 60 minutes	Ketamine was an effective pain medication	World J Emerg Med 2016
Moderate- severe pain	45	IV	0.3 mg/kg	Morphine 0.1 mg/kg	Maximum change in NRS for ketamine = 4.9 at 5 minutes, morphine = 5 at 100 minutes	Ketamine is not superior to morphine, but did control pain	AM J Emerg Med 2015

Postoperative Ketamine

- Dosing: 0.15-0.25 mg/kg/hr for 48-72 hours
- - Abdominal surgery
 - Cardiothoracic surgery
 - Orthopedic surgery
- Modest reduction in pain
 - 0.6 cm reduction at 24 hours (95% CI 0.3-0.8), 1.3 cm reduction at 72 hours (95% CI 0.2-2.4) among 36 trials
- Reduction in opioids consumed
 - (95% CI 12.7-27.7) among 36 trials
- Reduced morphine use by 5 mg at 24 hours (95% CI 2.8-7.2), 20.2 mg at 72 hours Reduced post-op nausea and vomiting • RR = 0.71, (95% CI 0.60-0.85) among 30 trials

Studied as adjuvant to reduce opioid doses and prevent hyperalgesia

Wang L, etal. Can J Anaesth. 2016 imagine

Assessment Question

Which of the following patients is the best candidate for ketamine for pain?

- A. 27 year old with a fractured ankle and a history of schizophrenia
- B. 74 year old with back pain and a blood pressure of 170/110
- C. 55 year old with a myocardial infarction D. 46 year old with abdominal pain and a tolerance to
- opioids

PAIN MANAGEMENT LIDOCAINE

Lidocaine

- Studied uses:
 - Renal colic
 - Back pain
 - Neuropathic pain
- nerve block
- Role for IV use in patients in whom narcotics are ineffective or not tolerated

Can be used intravenously, topically, or as a peripheral

Lidocaine

- Dosing:
 - Intravenous lidocaine 2% (20 mg/mL)
 - 200 mg)
 - Dilute in 100-250 mL of D5W or NS
 - Infuse over 10-20 minutes
- Telemetry during administration and monitored for bradycardia

Patients should be on 1.5 mg/kg actual body weight (max:

Lidocaine

- Advantages
 - Safe and effective
 - Cost effective
- Disadvantages
 - Potential for medication errors
 - Data limited to small studies and case series
 - Indications in which most effective are limited
 - Consider telemetry monitoring with IV administration

Lidocaine Adverse Effects

- Common
 - Nausea, vomiting, abdominal pain
 - Dizziness
 - Perioral numbress
- Uncommon
 - Metallic taste
 - Tremor
 - Dry mouth
 - Bradycardia

Lidocaine IV vs. Morphine in Renal • Adults aged 18-65 years presenting to ED with renal colic

- Prospective, randomized, double blind, single center
- 2 intervention groups
 - Lidocaine IV 1.5 mg/kg
 - Morphine IV 0.1 mg/kg
- Secondary:

• Primary: reduction in VAS at 5, 10, 15, and 30 minutes

Lidocaine IV vs. Morphine in Renal Colic 240 patients enrolled

- - 120 received lidocaine IV
 - 120 received morphine IV
- Notable demographics
 - 73% patients were male
 - Mean age 36 years old

Lidocaine IV vs. Morphine in Renal Colic

Lidocaine IV vs. Morphine in Renal • More patients responded to lidocaine than morphine 90% vs 70% (p=0.00001)

- Lidocaine was well tolerated, with dizziness being the most common adverse effect
- Conclusion: lidocaine is a safe an effective alternative to opioids in managing renal colic

- Randomized, double-blind, single center
- 2 intervention groups
 - Lidocaine IV 100 mg
 - Ketorolac IV 30 mg
- Primary: Difference in VAS at 60 minutes
- Secondary: Patient pain relief score at 1 week

Patients aged 15-55 with acute radicular back pain

Tanen DA, etal. J Emerg Med. 2014 imagine

- 41 patients enrolled
 - 21 patients received lidocaine
 - 20 patients received ketorolac
- Notable demographics
 - Mean age 37 years
 - Mean weight 88.6 kg

Tanen DA, etal. J Emerg Med. 2014 imagine

Tanen DA, etal. J Emerg Med. 2014 imagine

- 67% of patients in the lidocaine group required rescue analgesics
- No adverse effects were tracked
- Conclusions: while lidocaine decreased radicular back pain from baseline, it did not reach clinical significance

Tanen DA, etal. J Emerg Med. 2014 imagine

Lidocaine Additional Data

Setting	Indication	Ν	Route	Dose	Comparator	Result	Conclusions	Reference
ED	Critical limb ischemia	63	IV	2 mg/kg	Morphine 0.1 mg/kg	At 60 minutes, lidocaine had a mean reduction of 2.25 in VAS	Lidocaine superior to morphine	Emerg Med 2015
Meta- analysis	Neuropathic Pain	329	IV	1-5 mg/kg	placebo	Pooled analysis – reduction in VAS by 10.60 mm and superior to placebo (-10.02 mm, p=0.002)	IV lidocaine is effective compared to placebo for neuropathic pain	Anesth Ana 2005
Pain Clinics	Neuropathic Pain	58	Patch 5%	1-4 patches every 12 hours	Placebo	 31% of lidocaine patients had a 50% reduction in VAS vs 8.6% placebo and 41% of lidocaine patients had at least a 30% reduction in VAS vs 8.1% placebo 	Lidocaine is an effective adjuvant option for focal neuropathic pain	Pain 2003
ED	Postherpatic neuralgia	24	IV	1 mg/kg or 5 mg/kg	Placebo	All 3 infusions reduced VAS score from baseline	Lidocaine IV reduced pain, but no difference seen in dose or placebo	J Pain Symptom Manage 19

Assessment Question

Which of the following is FALSE about lidocaine for pain management?

- A. Intravenous lidocaine has been shown to be efficacious when administered for acute lower back pain
- B. Lidocaine doses of 1.5 mg/kg (about 100 mg) have been shown to be safe with few side effects
- C. Much of the data for intravenous lidocaine in the ED comes from small studies and case series

Assessment Question

JA is a 53 year old female presenting to the ED with 9/10 pelvic pain. A CT scan reveals a new nephrolithiasis in her ureter. JA's past medical history is significant for back pain and opioid abuse (sober for 3 years). Allergies list GI bleeding with NSAID use. Home medications include: acetaminophen 1000 mg every 6 hours as needed for back pain and omeprazole 20 mg daily. Given her history, JA requests avoiding anything with the potential for addiction.

Which of the following options would be best for JA's pain?

- A. Morphine 4 mg IV once
- B. Ketamine 0.3 mg/kg IV once
- C. Lidocaine 1.5 mg/kg IV once
- D. Ketorolac 10 mg IV once

Future Directions

CLINICAL FOCUSES

- + Behavioral Health Services
- + Cancer Services
- + Dentistry/Oral Health Services
- Emergency/Trauma Services

Overview

ALTO - Alternatives to Opiates Program

Emergency Medicine

Geriatric Emergency Department

Life Sustaining Management and Alternatives Program (LSMA)

Pediatric Emergency Medicine

Transfer Center

Trauma Center

- + Heart and Vascular Services
- Imaging Services
- + Neuroscience Institute

Home / ALTO

Search ...

ALTO - Alternatives to Opiates Program

Print Email

The Emergency Department (ED) at St. Joseph's University Medical Center is the first in the Nation to develop and implement ALTOSM, the Alternatives to Opiates Program, a highly successful unique alternative approach to acute pain management without the use of opioids and the potential addictions associated with opioid use.

The ALTOSM Program was launched in the ED in early January 2016, with 300+ patients treated with alternative protocols since then, patients who did not receive opioids when they previously would have been treated with opioids. The ALTOSM Program uses targeted non-opioid medications, trigger point injections, nitrous oxide, and ultrasound guided nerve blocks to tailor its patients' pain management needs and avoid opioids whenever possible, for example, in cases of kidney stones, acute low back pain, broken bones, acute headache and migraine pain.

A model for other hospitals and healthcare providers nationwide, the Emergency Department at St. Joseph's - the busiest ED in New Jersey with more 158,000 patient visits in 2015 - is an innovator in Emergency Medicine, having established such programs as the first Geriatric Emergency Department in the US, the first ED-based Palliative Care Program (Life Sustaining Management and Alternatives) in the US, and now, the ALTOSM program.

More in this category: « Overview Emergency Medicine »

imagine

Key Takeaways

- Consider non-opioid analgesia first, even if moderatesevere pain
 - Acetaminophen 1000 mg + ibuprofen 400 mg
 - Ketorolac at limited doses (10 mg)
- Subdissociative ketamine is an effective alternative to opioids for pain
 - Administer over 15 minutes to reduce adverse effects
- Lidocaine is effective for renal colic and neuropathic indications but needs more research
 - While safe, recommend cardiac monitoring

Questions?

• Email: Craig.P.Worby@hitchcock.org

References

- Kyriacou DN. Opioid vs Nonopioid Acute Pain Management in the Emergency Department. JAMA. 2017;318(17):1655–1656. doi:10.1001/jama.2017.16725
- Chang AK, Bijur PE, Esses D, Barnaby DP, Baer J. Effect of a Single Dose of Oral Opioid and Nonopioid Analgesics on Acute Extremity Pain in the Emergency DepartmentA Randomized Clinical Trial. JAMA. 2017;318(17):1661–1667. doi:10.1001/jama.2017.16190
- Motov S, Yasavolian M, Likourezos A, etal. Comparison of Intravenous Ketorolac at Three Single-Dose Regimens for Treating Acute Pain in the Emergency Department: A Randomized Controlled Trial. Ann Emerg Med. 2017 Aug;70(2):177-184. doi: 10.1016/j.annemergmed.2016.10.014. Epub 2016 Dec 16.
- Motov S, Rockoff B, Cohen V, etal. Intravenous Subdissociative-Dose Ketamine Versus Morphine for Analgesia in the Emergency Department: A Randomized Controlled Trial. Ann Emerg Med. 2015 Sep;66(3):222-229.e1. doi: 10.1016/j.annemergmed.2015.03.004. Epub 2015 Mar 26.
- Motov S, Mai M, Pushkar I, etal. A prospective randomized, double-dummy trial comparing IV push low dose ketamine to short infusion of low dose ketamine for treatment of pain in the ED. Am J Emerg Med. 2017 Aug;35(8):1095-1100. doi: 10.1016/j.ajem.2017.03.004. Epub 2017 Mar 3.
- Bowers KJ, McAllister KB, Ray M, etal. Ketamine as an Adjunct to Opioids for Acute Pain in the Emergency Department: A Randomized Controlled Trial. Ketamine as an Adjunct to Opioids for Acute Pain in the Emergency Department: A Randomized Controlled Trial.
- Zitek T, Gates M, Pitotti C, etal. A Comparison of Headache Treatment in the Emergency Department: Prochlorperazine Versus Ketamine. Ann Emerg Med. 2017 Oct 13. pii: S0196-0644(17)31568-8. doi: 10.1016/j.annemergmed.2017.08.063. [Epub ahead of print]
- Farnia MR, Jalali A, Vahidi E, etal. Comparison of intranasal ketamine versus IV morphine in reducing pain in patients with renal colic. Am J Emerg Med. 2017 Mar;35(3):434-437. doi: 10.1016/j.ajem.2016.11.043. Epub 2016 Nov 22. Shachar Shimonovich, Roy Gigi, Amir Shapira, etal. Intranasal ketamine for acute traumatic pain in the Emergency Department: a
- prospective, randomized clinical trial of efficacy and safety. BMC Emerg Med. 2016; 16: 43.

References

- Shrestha R, Pant S, Shrestha A, etal. Intranasal ketamine for the treatment of patients with acute pain in the emergency department. World J Emerg Med. 2016;7(1):19-24. doi: 10.5847/wjem.j.1920-8642.2016.01.003.
- Miller JP, Schauer SG, Ganem VJ, etal. Low-dose ketamine vs morphine for acute pain in the ED: a randomized controlled trial. Am J Emerg Med. 2015 Mar;33(3):402-8. doi: 10.1016/j.ajem.2014.12.058. Epub 2015 Jan 7.
- Ahern TL, Herring AA, Stone MB, etal. Effective analgesia with low-dose ketamine and reduced dose hydromorphone in ED patients with severe pain. Am J Emerg Med. 2013 May;31(5):847-51. doi: 10.1016/j.ajem.2013.02.008. Epub 2013 Apr 18.
- Wang L, Johnston B, Kaushal A, etal. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: a systematic review and meta-analysis of randomized trials. Can J Anaesth. 2016 Mar;63(3):311-25. doi: 10.1007/s12630-015-0551-4. Epub 2015 Dec 10.
- Soleimanpour H, Hassanzadeh K, Vaezi H, etal. Effectiveness of intravenous lidocaine versus intravenous morphine for patients with renal colic in the emergency department. BMC Urol. 2012 May 4;12:13. doi: 10.1186/1471-2490-12-13.
- Tanen DA, Shimada M, Danish DC[,] etal. Intravenous lidocaine for the emergency department treatment of acute radicular low back pain, a randomized controlled trial. J Emerg Med. 2014 Jul;47(1):119-24. doi: 10.1016/j.jemermed.2012.12.014. Epub 2014 Apr 24.
- Vahidi E, Shakoor D, Aghaie Meybodi M, etal. Comparison of intravenous lidocaine versus morphine in alleviating pain in patients with critical limb ischaemia. Emerg Med J. 2015 Jul; 32(7): 516-9. doi: 10.1136/emermed-2014-203944. Epub 2014 Aug 21.
- Tremont-Lukats IW, Challapalli V, McNicol ED, etal. Systemic administration of local anesthetics to relieve neuropathic pain: a systematic review and meta-analysis. Anesth Analg. 2005 Dec;101(6):1738-49.
- Meier T, Wasner G, Faust M, etal. Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain. 2003 Nov;106(1-2):151-8. Baranowski AP, De Courcey J, Bonello E. A trial of intravenous lidocaine on the pain and allodynia of postherpetic neuralgia. J Pain Symptom Manage. 1999 Jun; 17(6): 429-33.

