

Occupational Noise Exposure 29 CFR 1910.95

www.une.edu/campus/ehs

Is There a Problem?

- More than 30 million Americans are exposed to hazardous sound levels on a regular basis
- 10 million have suffered irreversible noise induced hearing loss
- Rate of hearing loss is increasing in the U.S.

Good Hearing is Important

- Work sites can be dangerous
- What sound on a worksite alerts you to danger?
 - back up alarms
 - vehicle traffic
 - changes in equipment noise
 - verbal warnings from other workers

Group Exchange

- Think about what your favorite sound is?
 - Could you hear your favorite sound if you had a hearing loss?

The Ear is a Delicate Tool

The Cochlea and the Inner Ear

☑ THE COCHLEA AND THE INNER EAR

- ✓ A fluid filled sound reception chamber
- Contains thousands of tiny hair cells
- ✓ The cells respond to sound waves made in the fluid
- \checkmark The cells pass the sensation on to the auditory nerve

The Cochlea and the Inner Ear

☑ SENSORI-NEURAL HEARING LOSS

- ✓ Noise-induced hearing loss
- ✓ Damages the hair cells or auditory nerves
- ✓ If the noise is stopped hair cells can bounce back
- Damage can be temporary

The Cochlea and the Inner Ear

☑ SENSORI-NEURAL HEARING LOSS

✓ If the noise continues hair cells can't bounce back
 ✓ Damage can be permanent!

Inner Ear

- Cochlea
 - inside are nerve cells called hair cells
 - fragile
- Continuous noise
 - above 90 dBA
 - as bad for hair cells as continuous foot traffic is to grass

This is your ear.

This is your ear on noise.

Any Questions?

What is Noise?

- Noise is a physical energy that moves through the air like ripples in a pond

 noise is directional
 - noise will bounce off walls and other objects

Two Components of Noise

- Frequency
 - perceived as "pitch"
 - measured in hertz (Hz)
 - human ear most sensitive in the 1,000 to 4,000 range
 - speech frequency ranges

- Intensity
 - perceived as "loudness"
 - measured in decibels (dB)
 - "A" scale mimics the human ear
 - used for noise surveys

How is Noise Measured?

- Sound level meter
 - instant noise readings
 - generally A scale used
 - mimics the human ear
- Noise dosimeter
 - measure a workers noise exposure over a shift
 - daily dose of noise
 - very accurate

Units of Measurement for Noise

Decibel dB

- little increases on the decibel scale make a big difference
 - a 6 decibel increase in noise is equal to doubling the intensity or loudness of the noise
- Ear protection needed
 - noise above 90 dBA
 - recommended at 85 dBA

Examples of Noise Levels

• Examples at Home

- whispered voice 20 dBA
- refrigerator hum 40 dBA
- normal conversation 60 dBA
- average TV 74 dBA
- Blender 80 dBA
- lawn mower 95 dBA
- Leaf blower 110 dBA
- Chainsaw 115 dBA

Noisy Hobbies

• Guns

- large caliber short barrel = 130 dBA
- shotguns & high powered rifles = 140 dBA
- Motorcycles
 - 90 dBA
- Snowmobiles
 - 120 dBA

- Woodworking
 - electric drill = 95 dBA
 - power saw = 110 dBA
 - air tools = 120 dBA
 - belt sander = 93 dBA
- Walkman headsets
 - 90 dBA
- Rock concerts
 - 140 dBA

Noise In The Workplace

• Examples at Work

- lawn mower 95 dBA
- Leaf blower 110 dBA
- Chainsaw 115 dBA
- power actuated nail gun 94 117 dBA
- pneumatic hand held grinder 101 dBA
- air hammer 105 130 dBA
- snowplow 87 97 dBA
- portable saw 105 dBA
- air wrench -107 dBA
- arc welder 116 dBA

Communication In Noisy Environments

- Hard to hear someone talking in noisy environments
 - the speaker needs to be louder than background noise
- Radios or cell phones will need to be turned up
 - if you have a hearing loss, it will be harder to distinguish speech in this environment

How Do You Know You Are Exposed to Damaging Noise

- Feel the need to shout in order to be heard 3 feet away
 - sound levels probably approaching 85 dBA
- If immediately after a period of high noise exposure
 - ringing, buzzing or whistling is noticed
- Equipment is tagged or marked as noise hazardous

How Much Noise Can You Be Exposed To?

OSHA rules

- 90 dBA averaged over an 8 hr shift
 - requires the use of PPE or other controls to reduce your exposure
 - earplugs must be used whenever noise is 90 dB +
- 85 dBA averaged over an 8 hr shift
 - requires your employer to enroll you in a hearing conservation program
 - training
 - hearing tests & follow up

What is a TWA?

- This is a daily "dose" of noise not a single exposure to a noisy piece of equipment
- Your daily dose of noise (TWA) is a function of:
 how loud the equipment is (intensity)
 - how close you are to the noise
 - how long you are exposed to the noise

Main Causes of Hearing Loss

- Heredity
- Infections
- Acustic trauma
- Prescription drugs
- Presbycusis

Types of Hearing Loss

- 2 Basic Types of Hearing Loss
 - Conductive
 - A hearing problem involving the outer ear or middle ear
 - Sensori-neural
 - A hearing problem involving the inner ear
- Mixed hearing loss
 - A problem involving the outer, middle and inner ear is a mixed hearing loss

Conductive Hearing Loss

Causes:

- middle ear infections,
- collection of fluid in the middle ear
- blockage of the outer ear (by wax),
- damage to the eardrum by infection or trauma,
- otosclerosis, a condition in which the ossicles of the middle ear become immobile because of growth of the surrounding bone,
- rarely, rheumatoid arthritis affects the joints between the ossicles.

Sensori-neural Hearing Loss

Sensori-neural hearing loss:

- age-related hearing loss,
- acoustic trauma (loud noise, etc.) to the hair cells,
- viral infections of the inner ear
- certain drugs, such as aspirin, quinine and some antibiotics, affect the hair cells,
- Meniere's disease
- acoustic neuroma (a benign non-cancerous tumor of the auditory nerve),
- meningitis (infection of the coverings of the brain),
- encephalitis (infection in the brain)

Tinnitus

- Hearing loss may not be silent
 - Persistent (often or all the time)
 - Ringing, roaring, clicking or hissing sound
 - 12 million Americans have Tinnitus
 - should be evaluated by a Dr.
 - smoking, alcohol & loud noise can make it worse
 - use earplugs whenever exposed to noise

In Addition to Hearing Loss....

- Exposure to noise can....
 - Cause increased fatigue
 - headaches
 - increase the heart rate and blood pressure
 - cause muscles to become tense
 - cause indigestion
 - can lead to impaired balance
 - make it more difficult to hear audible warning devices

Noise Induced Hearing Loss

- Entirely preventable
 - "People would pay more attention to hearing loss if it caused a lot of physical pain"

Audiometric (Hearing) Testing

- Required annually for those employees enrolled in a hearing conservation program
 - identifies anyone with a change in hearing
 - this is just a "screening test" and should not be used to diagnose the type or extent of hearing loss
 - testing helps determine the effectiveness of an employers hearing conservation program

Audiograms

Computer generated "tape" showing normal hearing

NAME OF	EMPLOYEE
TEST DAT	E
OTHER ID) INFO
RIGHT EA	IR
500 HZ	2 -> 5 dB
1000 HZ	2 -> 10
2000 HZ	2 -> 5
3000 HZ	2 -> 15
4000 HZ	2 -> 35
6000 HZ	2 -> 25
LEFT EAR	
500 HZ	2 -> 10 dB
1000 HZ	2->5
etc. etc.	. etc.

Computer generated graph of normal hearing

Degrees of Hearing Loss

- Normal 10 25 dB
 Mild 30 45 dB
 Moderate 50 65 dB
- Severe 70 85 dB
- Profound 90 dB

UNIVERSITY OF NEW ENGLAND Biddeford & Portland, Maine

Example of hearing loss

- Have you had a STS?
 - an average shift of greater than or equal to 10 dB at 2000, 3000, 4000 Hz
 - calculated by
 - comparing your baseline test with your present hearing level

UNIVERSITY OF NEW ENGLAND Biddeford & Portland, Maine

Poor Hearing Test Results?

The following can result in a bad test result:

- exposure to noise without hearing protection before the test
- failure to follow the technicians instructions
- fatigue
- substance abuse
- Tinnitus
- pseudohypacusis (faking it)

Prevention of Further Hearing Loss at Work

- Identify noise hazardous equipment
- Put distance between you and the noise source
- Limit the amount of time you are exposed
- Modify the noise source so it is quieter
- Use hearing protection when around loud noise

PREVENTION

Identify noise hazardous equipment:

- Measure noise sources at your job site to determine what poses a risk to hearing
 - include any equipment that produces 85 dB or greater in your inventory

PREVENTION

- Label or ID any equipment that exposes the operator to 90 dBA or more
- Always use hearing protection when working with labeled equipment

PREVENTION:

Limit the amount of time you are exposed:

- Schedule noise activities for fewest workers needed for the job
- Take breaks away from the noise hazardous area
- Limit the amount of time employees are exposed to noise

PREVENTION

Use hearing protection

- It is common for less than 50% of the employees who should be wearing hearing protection actually wear them in most industries
- If you have a hearing impairment it is critical you use them whenever you are exposed to noise
 - both on and off the job site!

HPD used - earplugs

Earplugs
 – pre formed (latex)

hand formed
 (polyurethane or
 PVC)

HPD used - canal caps & ear muffs

Canal Caps

Ear Muffs

Noise Reduction Rating

- All hearing protection devices have a NRR assigned
- NRR's do not accurately reflect attenuation in the real world
- Field testing indicates.....
 - NRR is approximately half of what is listed for earplugs
 - NRR is approximately 75% of what is listed for earmuffs

NRR's - Good Rule of Thumb

- Take the NRR on the package and divide the number by 2
- for example.....
 - earplug with NRR of 30 dB most likely has a working attenuation of 15 dB

• Goal

- select protection that
 will reduce your
 exposure below 85
 dBA
- Backhoe = 93 dBA
 - earplug with a NRR of
 20 so attenuation is
 about 10
 - 93 10 = 83 dBA

NRR the myth

Bigger is not necessary better

- Large NRR may not be appropriate if
 - noise levels are in the high 80 dB to low 90 dB range
 - what is needed is not an NRR of 30 dB but a well-fitted and comfortable device that can provide an actual delivered 10 or 15 dB of noise reduction
 - if the need to speak and be understood is needed in the noise environment
 - flat and moderate attenuation passive devices can be used

Flat Attenuating Devices

- Good for
 - noise exposures averaging 85 - 95 dBA as a TWA
 - environments were the spoken word needs to be heard
 - those employees
 with a hearing
 impairment

EAR UltraTech

Hearing Aids are not hearing protection

- Hearing aids do not block out enough sound for most occupational exposures to noise
- When hearing aid users are exposed to harmful levels of noise they should
 - remove their hearing aids and use hearing protection or
 - turn off their hearing aids and put ear muffs on over them

The bottom line.....

- Your ears are a delicate tool if your working with broken equipment you need to address your exposure by...
 - getting further evaluation from an audiologist; otogaryngologist; physician
 - choosing hearing protection that is right for you
 - asking for your employers help in evaluating your working environment and making changes to reduce your exposure

