Non-Opioid Pain Management: In the ED and Beyond

Craig P. Worby, PharmD BCCCP BCPS
Clinical Lead Pharmacist – Emergency Medicine
Dartmouth Hitchcock Medical Center
Objectives

• Describe the pathophysiology of pain
• Compare and contrast alternatives to opioids for pain management
• Analyze supporting literature for non-opioid pain options
• Recommend appropriate medication therapy given a patient case
What is Covered

- Strategies and approaches to acute pain in ED
- Paradigm shifts in perceptions of pain management
- New data on combination therapy of acetaminophen + ibuprofen
- New data on ketorolac
- Ketamine
- Intravenous lidocaine
What is Not Covered

- ICU Pain Management
- Neuropathic Pain
- Chronic Pain
- Cancer Pain
Epidemiology

- 33,091 overdose deaths involving an opioid in 2015
- ED only accounts for 4.7% of opioid prescriptions, but is frequently where patients are first introduced to opioids
- Percentage of ED visits in which an opioid is prescribed rose from 20.8% in 2001 to 31.0% in 2010
- 17% of patient’s prescribed an opioid for acute pain were still taking the medication 1 year after initial ED visit
Combatting the Epidemic

- Prevent new cases of addiction
 - Keep opioid naïve patients naïve
- Balance benefit of pain relief with risk of addiction
 - Identification of high risk patients
- Shared understanding with patient on goals
 - Goal to reduce pain enough to function, not eliminate
- Acute pain improves within days
 - Only 2-3 days of opioids is needed
Red Flags for Opioid Abuse Potential

- Adolescents and young adults
- History of substance use (including tobacco)
- Social isolation or dysfunction
- Existing psychiatric disease
- Concomitant use of sedatives
PHYSIOLOGY OF PAIN
5 PHASES OF ADAPTIVE PAIN

TRANSDUCTION
CONDUCTION
TRANSMISSION
PERCEPTION
MODULATION

NA+ CHANNELS

NMDA RECEPTORS
OPIOID RECEPTORS
PAIN MANAGEMENT
ACETAMINOPHEN + IBUPROFEN
Acetaminophen + Ibuprofen

- Possible synergistic effect by decreasing pain through multiple mechanisms
- Combination used in Australia, New Zealand, and Europe
- Limited data to date – postoperative and dental pain

- Advantages
 - Cost-effective
 - Limited adverse effects
- Disadvantages
 - Perception & guidance
Effect of a Single Dose of Oral Opioid and Nonopioid Analgesics on Acute Extremity Pain in the Emergency Department
A Randomized Clinical Trial

Andrew K. Chang, MD, MS; Polly E. Bijur, PhD; David Esses, MD; Douglas P. Barnaby, MD, MS; Jesse Baer, MD
Non-Opioid vs. Opioid Extremity Pain

- Patients aged 21 to 64 presenting to ED with acute extremity pain
- Randomized, double-blind, treatment control
- 4 intervention groups
 - 400 mg ibuprofen + 1000 mg acetaminophen
 - 5 mg oxycodone + 325 mg acetaminophen
 - 5 mg hydrocodone + 325 mg acetaminophen
 - 30 mg codeine + 325 mg acetaminophen
- Primary: NRS pain score at 2 hours
- Secondary:
 - NRS pain score at 1 hour
 - Severity of pain – none, mild, moderate, severe
Non-Opioid vs. Opioid Extremity Pain

- 411 patients enrolled
 - 101 patients – APAP + ibuprofen
 - 104 patients – oxycodone + APAP
 - 103 patients – hydrocodone + APAP
 - 103 patients – codeine + APAP

- Notable demographics
 - 60% latino, 31% black
 - 62% presented with muscle strain or sprain
 - 22% presented with extremity fracture

Chang AK, et al. JAMA. 2017
Non-Opioid vs. Opioid Extremity Pain

Chang AK, et al. JAMA. 2017
Non-Opioid vs. Opioid Extremity Pain

- 17.8% of patients received rescue analgesia
 - Predominantly oxycodone
 - No difference in need observed between groups
- Post-hoc analysis in severe pain patients also displayed no difference
- Conclusion:
 - Acetaminophen 1000 mg + ibuprofen 400 mg showed no difference in pain reduction at 2 hours from opioid analgesia and may be an effective initial option for pain management

Chang AK, et al. JAMA. 2017
PAIN MANAGEMENT

KETOROLAC
Ketorolac

- Potent NSAID analgesic
- Available in tablets and injectable for IV/IM
 - IV/IM – 15 mg, 30 mg, 60 mg
 - PO – 10 mg

- Advantages
 - Powerful analgesic
 - Many studied uses
 - Cost effective

- Disadvantages
 - Significant drug-drug interactions
 - Adverse effects
 - Nausea, vomiting, dyspepsia, dizziness
 - Nephrotoxicity
 - GI hemorrhage – DOSE DEPENDENT
Ketorolac Dosing in ED

- Patients aged 18-65 presenting to ED with acute flank, abdominal, musculoskeletal, or headache pain with NRS pain score > 5
- Randomized, double-blind, single center
- 3 intervention groups
 - Ketorolac 10 mg
 - Ketorolac 15 mg
 - Ketorolac 30 mg
- Primary: reduction in NRS at 30 minutes
- Secondary: rates of adverse effects and patients requiring rescue analgesia

Ketorolac Dosing in ED

- 240 patients enrolled
 - 80 patients received 10 mg
 - 80 patients received 15 mg
 - 80 patients received 30 mg
- Notable demographics
 - 45% male
 - 38% abdominal pain, 33% flank pain, 24% musculoskeletal pain

Mean Pain Scores (SD)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>30 minutes</th>
<th>1 hour</th>
<th>2 hours</th>
<th>Significance to baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg</td>
<td>7.73 (1.65)</td>
<td>5.13 (2.71)</td>
<td>4.56 (2.77)</td>
<td>3.77 (2.96)</td>
<td>Significant reduction</td>
</tr>
<tr>
<td>15 mg</td>
<td>7.54 (1.61)</td>
<td>5.05 (2.56)</td>
<td>4.09 (2.93)</td>
<td>3.60 (2.37)</td>
<td>Significant reduction</td>
</tr>
<tr>
<td>30 mg</td>
<td>7.80 (1.55)</td>
<td>4.84 (2.86)</td>
<td>4.11 (2.93)</td>
<td>3.44 (3.00)</td>
<td>Significant reduction</td>
</tr>
<tr>
<td>Significance between groups</td>
<td>Not significant</td>
<td>Not significant</td>
<td>Not significant</td>
<td>Not significant</td>
<td></td>
</tr>
</tbody>
</table>
Ketorolac Dosing in ED

• No difference in use of rescue morphine
• No difference in rates of adverse effects
 • Dizziness (17.5%)
 • Nausea (11.6%)
 • No patients had a GI hemorrhage
• Conclusions
 • Patients experience no greater reduction in analgesia with higher doses of ketorolac compared to 10 mg dosing
PAIN MANAGEMENT
KETAMINE
Ketamine

• Functions by binding to NMDA receptors in the CNS
 • Structurally related to PCP
• Racemic mixture
 • Both isomers are effective; however S enantiomer is more potent with fewer emergence reactions
• May be used as alternative or adjunct to opioids
Ketamine

- Studied uses:
 - Acute pain – wide range of etiologies
 - Chronic pain
- Studied routes
 - IV, IM, Intranasal, SubQ

- Dosing
 - Subdissociative: 0.15 – 0.6 mg/kg IV bolus
 - Consider mixing in 50 mL NS and administer over 15 minutes (Motov, 2017)
 - Anesthetic: 1-4.5 mg/kg

- Duration of Effect
 - Peak at 15 minutes
 - May last up to 1-2 hours
Ketamine

- Advantages
 - Large therapeutic window
 - Lack of respiratory depression

- Disadvantages
 - Limited data – small trials in ED and postoperative setting
 - High rates of mild, transient adverse effects
 - Higher cost than opioids
 - State board of nursing
Ketamine Adverse Effects

<table>
<thead>
<tr>
<th>Subdissociative Dosing</th>
<th>Anesthetic Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Tachycardia</td>
</tr>
<tr>
<td>Feeling of unreality</td>
<td>Emergence reactions</td>
</tr>
<tr>
<td>Hallucination - rare</td>
<td>Elevated intraocular pressures</td>
</tr>
<tr>
<td>Mild elevations in blood pressure</td>
<td>Elevations in intracranial pressures?</td>
</tr>
</tbody>
</table>
Avoid Ketamine

- Psychiatric illness
- Systolic blood pressure > 180 mmHg
- Heart rate > 150 beats per minute
Ketamine vs. Morphine Acute Pain

- Patients aged 18-55 presenting to ED with acute abdominal, flank, back, or musculoskeletal pain with a NRS > 5
- Prospective, randomized, double-blind
- 2 intervention groups
 - Ketamine 0.3 mg/kg
 - Morphine 0.1 mg/kg
- Primary: reduction in NRS at 30 minutes
- Secondary: Need for rescue analgesia at 30 minutes, 60 minutes, vital sign changes, adverse effects

Ketamine vs. Morphine Acute Pain

- 90 patients enrolled
 - 45 received ketamine
 - 45 received morphine
- Notable demographics
 - 62% female
 - 71% presented with abdominal pain
 - 18% presented with flank pain
Ketamine vs. Morphine Acute Pain

- More patients required fentanyl rescue in ketamine at 120 minutes: 29% ketamine vs 12% morphine (95% CI 0.8-34.2)
- Adverse effects observed with ketamine
 - Dizziness (53%)
 - Disorientation (29%)
 - Mood changes (13%)
- Conclusions: Ketamine is an effective pain medication; however it is associated with a high rate of mild adverse effects and may need rescue opioids

<table>
<thead>
<tr>
<th>Indication</th>
<th>N</th>
<th>Route</th>
<th>Dose</th>
<th>Comparator</th>
<th>Result</th>
<th>Conclusion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal Colic</td>
<td>53</td>
<td>Nasal</td>
<td>1 mg/kg</td>
<td>Morphine IV 0.1 mg/kg</td>
<td>Ketamine reduced pain from 8.35 to 4.17 on VAS at 30 minutes</td>
<td>No difference in pain reduction seen between ketamine and morphine</td>
<td>Am J Emerg Med 2017</td>
</tr>
<tr>
<td>Headache</td>
<td>54</td>
<td>IV</td>
<td>0.3 mg/kg</td>
<td>Prochlorperazine 10 mg</td>
<td>Difference in pain of 18.1 on VAS at 45 minutes</td>
<td>Prochlorperazine superior to ketamine</td>
<td>Ann Emerg Med 2017</td>
</tr>
<tr>
<td>Trauma pain</td>
<td>90</td>
<td>Nasal</td>
<td>1 mg/kg</td>
<td>Morphine 0.1 mg/kg IV or Morphine 0.15 mg/kg IM</td>
<td>Ketamine reduced pain by 56 mm on VAS at 40 minutes</td>
<td>No statistical difference between groups</td>
<td>BMC Emerg Med 2016</td>
</tr>
<tr>
<td>Moderate-severe pain</td>
<td>39</td>
<td>Nasal</td>
<td>0.7 mg/kg + 0.3 mg/kg rescue</td>
<td>None</td>
<td>100% of patients had at least a 20 mm reduction on VAS at 30 and 60 minutes</td>
<td>Ketamine was an effective pain medication</td>
<td>World J Emerg Med 2016</td>
</tr>
<tr>
<td>Moderate-severe pain</td>
<td>45</td>
<td>IV</td>
<td>0.3 mg/kg</td>
<td>Morphine 0.1 mg/kg</td>
<td>Maximum change in NRS for ketamine = 4.9 at 5 minutes, morphine = 5 at 100 minutes</td>
<td>Ketamine is not superior to morphine, but did control pain</td>
<td>AM J Emerg Med 2015</td>
</tr>
</tbody>
</table>
Postoperative Ketamine

- Dosing: 0.15-0.25 mg/kg/hr for 48-72 hours
- Studied as adjuvant to reduce opioid doses and prevent hyperalgesia
 - Abdominal surgery
 - Cardiothoracic surgery
 - Orthopedic surgery
- Modest reduction in pain
 - 0.6 cm reduction at 24 hours (95% CI 0.3-0.8), 1.3 cm reduction at 72 hours (95% CI 0.2-2.4) among 36 trials
- Reduction in opioids consumed
 - Reduced morphine use by 5 mg at 24 hours (95% CI 2.8-7.2), 20.2 mg at 72 hours (95% CI 12.7-27.7) among 36 trials
- Reduced post-op nausea and vomiting
 - RR = 0.71, (95% CI 0.60-0.85) among 30 trials
Assessment Question

Which of the following patients is the best candidate for ketamine for pain?

A. 27 year old with a fractured ankle and a history of schizophrenia
B. 74 year old with back pain and a blood pressure of 170/110
C. 55 year old with a myocardial infarction
D. 46 year old with abdominal pain and a tolerance to opioids
PAIN MANAGEMENT
LIDOCAINE
Lidocaine

- Studied uses:
 - Renal colic
 - Back pain
 - Neuropathic pain

- Can be used intravenously, topically, or as a peripheral nerve block
- Role for IV use in patients in whom narcotics are ineffective or not tolerated
Lidocaine

- Dosing:
 - Intravenous lidocaine 2% (20 mg/mL)
 - Patients should be on 1.5 mg/kg actual body weight (max: 200 mg)
 - Dilute in 100-250 mL of D5W or NS
 - Infuse over 10-20 minutes
 - Telemetry during administration and monitored for bradycardia
Lidocaine

• Advantages
 • Safe and effective
 • Cost effective

• Disadvantages
 • Potential for medication errors
 • Data limited to small studies and case series
 • Indications in which most effective are limited
 • Consider telemetry monitoring with IV administration
Lidocaine Adverse Effects

- **Common**
 - Nausea, vomiting, abdominal pain
 - Dizziness
 - Perioral numbness

- **Uncommon**
 - Metallic taste
 - Tremor
 - Dry mouth
 - Bradycardia
Lidocaine IV vs. Morphine in Renal Colic

- Adults aged 18-65 years presenting to ED with renal colic
- Prospective, randomized, double blind, single center
- 2 intervention groups
 - Lidocaine IV 1.5 mg/kg
 - Morphine IV 0.1 mg/kg
- Primary: reduction in VAS at 5, 10, 15, and 30 minutes
- Secondary:
Lidocaine IV vs. Morphine in Renal Colic

- 240 patients enrolled
 - 120 received lidocaine IV
 - 120 received morphine IV
- Notable demographics
 - 73% patients were male
 - Mean age 36 years old

Lidocaine IV vs. Morphine in Renal Colic

Lidocaine IV vs. Morphine in Renal Colic

- More patients responded to lidocaine than morphine 90% vs 70% (p=0.00001)
- Lidocaine was well tolerated, with dizziness being the most common adverse effect
- Conclusion: lidocaine is a safe and effective alternative to opioids in managing renal colic
Lidocaine IV vs. Ketorolac Back Pain

• Patients aged 15-55 with acute radicular back pain
• Randomized, double-blind, single center
• 2 intervention groups
 • Lidocaine IV 100 mg
 • Ketorolac IV 30 mg
• Primary: Difference in VAS at 60 minutes
• Secondary: Patient pain relief score at 1 week

Lidocaine IV vs. Ketorolac Back Pain

- 41 patients enrolled
 - 21 patients received lidocaine
 - 20 patients received ketorolac
- Notable demographics
 - Mean age 37 years
 - Mean weight 88.6 kg

Lidocaine IV vs. Ketorolac Back Pain

Lidocaine IV vs. Ketorolac Back Pain

- 67% of patients in the lidocaine group required rescue analgesics
- No adverse effects were tracked
- Conclusions: while lidocaine decreased radicular back pain from baseline, it did not reach clinical significance

Lidocaine Additional Data

<table>
<thead>
<tr>
<th>Setting</th>
<th>Indication</th>
<th>N</th>
<th>Route</th>
<th>Dose</th>
<th>Comparator</th>
<th>Result</th>
<th>Conclusions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>Critical limb ischemia</td>
<td>63</td>
<td>IV</td>
<td>2 mg/kg</td>
<td>Morphine 0.1 mg/kg</td>
<td>At 60 minutes, lidocaine had a mean reduction of 2.25 in VAS</td>
<td>Lidocaine superior to morphine</td>
<td>Emerg Med J 2015</td>
</tr>
<tr>
<td>Meta-analysis</td>
<td>Neuropathic Pain</td>
<td>329</td>
<td>IV</td>
<td>1-5 mg/kg</td>
<td>placebo</td>
<td>Pooled analysis – reduction in VAS by 10.60 mm and superior to placebo (-10.02 mm, p=0.002)</td>
<td>IV lidocaine is effective compared to placebo for neuropathic pain</td>
<td>Anesth Analg 2005</td>
</tr>
<tr>
<td>Pain Clinics</td>
<td>Neuropathic Pain</td>
<td>58</td>
<td>Patch 5%</td>
<td>1-4 patches every 12 hours</td>
<td>Placebo</td>
<td>31% of lidocaine patients had a 50% reduction in VAS vs 8.6% placebo and 41% of lidocaine patients had at least a 30% reduction in VAS vs 8.1% placebo</td>
<td>Lidocaine is an effective adjuvant option for focal neuropathic pain</td>
<td>Pain 2003</td>
</tr>
<tr>
<td>ED</td>
<td>Postherpatic neuralgia</td>
<td>24</td>
<td>IV</td>
<td>1 mg/kg or 5 mg/kg</td>
<td>Placebo</td>
<td>All 3 infusions reduced VAS score from baseline</td>
<td>Lidocaine IV reduced pain, but no difference seen in dose or placebo</td>
<td>J Pain Symptom Manage 1999</td>
</tr>
</tbody>
</table>
Which of the following is FALSE about lidocaine for pain management?

A. Intravenous lidocaine has been shown to be efficacious when administered for acute lower back pain
B. Lidocaine doses of 1.5 mg/kg (about 100 mg) have been shown to be safe with few side effects
C. Much of the data for intravenous lidocaine in the ED comes from small studies and case series
JA is a 53 year old female presenting to the ED with 9/10 pelvic pain. A CT scan reveals a new nephrolithiasis in her ureter. JA’s past medical history is significant for back pain and opioid abuse (sober for 3 years). Allergies list GI bleeding with NSAID use. Home medications include: acetaminophen 1000 mg every 6 hours as needed for back pain and omeprazole 20 mg daily. Given her history, JA requests avoiding anything with the potential for addiction.

Which of the following options would be best for JA’s pain?

A. Morphine 4 mg IV once
B. Ketamine 0.3 mg/kg IV once
C. Lidocaine 1.5 mg/kg IV once
D. Ketorolac 10 mg IV once
Future Directions

ALTO - Alternatives to Opiates Program

The Emergency Department (ED) at St. Joseph’s University Medical Center is the first in the Nation to develop and implement ALTO™, the Alternatives to Opiates Program, a highly successful unique alternative approach to acute pain management without the use of opioids and the potential addictions associated with opioid use.

The ALTO™ Program was launched in the ED in early January 2016, with 300+ patients treated with alternative protocols since then, patients who did not receive opioids when they previously would have been treated with opioids. The ALTO™ Program uses targeted non-opioid medications, trigger point injections, nitrous oxide, and ultrasound guided nerve blocks to tailor its patients’ pain management needs and avoid opioids whenever possible, for example, in cases of kidney stones, acute low back pain, broken bones, acute headache and migraine pain.

A model for other hospitals and healthcare providers nationwide, the Emergency Department at St. Joseph’s - the busiest ED in New Jersey with more 158,000 patient visits in 2015 - is an innovator in Emergency Medicine, having established such programs as the first Geriatric Emergency Department in the US, the first ED-based Palliative Care Program (Life Sustaining Management and Alternatives) in the US, and now, the ALTO™ program.
Key Takeaways

• Consider non-opioid analgesia first, even if moderate-severe pain
 • Acetaminophen 1000 mg + ibuprofen 400 mg
 • Ketorolac at limited doses (10 mg)
• Subdissociative ketamine is an effective alternative to opioids for pain
 • Administer over 15 minutes to reduce adverse effects
• Lidocaine is effective for renal colic and neuropathic indications but needs more research
 • While safe, recommend cardiac monitoring
Questions?

• Email: Craig.P.Worby@hitchcock.org
References

• Bowers KJ, McAllister KB, Ray M, et al. Ketamine as an Adjunct to Opioids for Acute Pain in the Emergency Department: A Randomized Controlled Trial. Ketamine as an Adjunct to Opioids for Acute Pain in the Emergency Department: A Randomized Controlled Trial.

References