Transcranial Magnetic Stimulation (TMS)
TMS—the best intervention for treatment resistant major depressive disorder

• TMS is very safe and highly effective
• TMS is well tolerated
• The response to TMS is lasting
Repetitive Transcranial Magnetic Stimulation (rTMS)

- Results from over eight years of providing rTMS in private practice
- Indications and which patients respond the best
- Comparing FDA approved rTMS devices
- Future direction(s) for TMS
TMS is very safe and highly effective

• Mechanism of action
 • A changing magnetic field induces electrical current (Maxwell and Faraday)
 • MRI strength magnetic coil induces the magnetic energy that traverses the skull and into the cortex.
 • The time varying magnetic field induces current in the neurons of the superficial cortex that stimulates other neurons that are part of the circuit.

• Role of neuroplasticity
 • Effects continue after stimulation is finished
 • rTMS affects cortical excitability with high frequency pulses increasing cortical excitability and low frequency pulses decreasing cortical excitability.
Focus is on location

• Left prefrontal cortex
 • Window into the Limbic System and associated circuits
 • Amygdala, hippocampus, mammillary bodies, etc.
 • Stimulation continues downstream

• Other areas are focus for study
Efficacy of rTMS

• Over 20 years of research and development
• More than 30 published randomized controlled trials
• Over a dozen Meta-analyses
• Over 11 years of clinical experience in the community
• Primary focus has been antidepressant treatment
• O’ Reardon, et. al., 2007. Industry sponsored (N = 301)
 • Randomized to either active arm or sham
 • Patients failed four previous antidepressants
 • Outcomes measured at 4 and 6 weeks using MADRAS and Ham-D
 • Active treatment superior to sham at 4 and 6 weeks (p = 0.038)
 • Response defined as > 50 % improvement from baseline
 • Response was Two fold higher after 4 weeks and Three fold higher at 6 weeks
Large scale studies of rTMS (N > 100)

• George, et. al., 2010
 • Randomized to active or sham
 • Active arm showed superiority at week 3 (14 % vs 5 %)
 • Open label extension for patients not previously responding
 • 41 % responded and 30 % remitted
Meta-analysis

- Level 1 evidence since randomized controlled trials are included
- More than 12 meta-analyses have been conducted since 2000
 - Majority show statistical superiority of rTMS to sham treatments
 - Effect sizes ranged from those showing 50% to 80% improvement in depression scores
Clinical Effectiveness of rTMS

• Pooled data of nonresearch samples show robust results
 • Carpenter et al (2012) pooled data from 42 clinical practices (N = 307)
 • Average of 2.5 to 3.4 previously failed medication trials
 • 58 % responded and 37.1 % remitted
 • Connolly et al (2012) (N =100)
 • Single academic practice
 • Similar results 50.6 % responded and 24.7 % remitted
 • Included patients who had failed ECT
Comparison with Electroconvulsive Treatment (ECT)

- ECT has had over 75 years of use and modifications
- rTMS has been FDA approved for 11 years
- ECT has faster response rate
- rTMS is non-invasive
- rTMS can help improve cognition whereas memory problems are a hallmark side effect of ECT
- Most Head to Head studies have showed ECT as more effective
 - Limited by sample size and variations on the rTMS protocols used
rTMS is Well Tolerated

• Proven safe and effective for decades
 • Only contraindication is presence of magnetic sensitive metal above shoulders
 • In some cases implanted stimulators may be a problem

• Transient discomfort to area of treatment
 • Stimulation to superficial neurons
 • Intense 4 second train of pulses at 10 Hz
 • Discomfort is diminished over time
rTMS is Well Tolerated

- Patients with migraine may have headaches
- Seizures are rare
 - Meta analysis by Bae et al (2007) estimate risk is 1.4 %
 - Increased risk with alcohol use, sleep deprivation, or some medications
- Imaging studies show no structural changes after rTMS
- Human histological study (Gates et al 1992) showed no histopathological changes to temporal lobe of one patient
- Meta analysis (N = > 3000) (Machii et al 2006) showed no cognitive deterioration
TMS response is long lasting

- Durability studies show vast majority of patients have over a year of lasting response.
- My experience is that about 25% of patients need another treatment within two to three years.
- Majority of patients have not needed further rTMS and some have not had treatment for over 8 years.
- Subsequent treatments have better and longer lasting response than the previous treatment.
Results of over eight years experience providing TMS

• Well over 300 patients
• Results measured by PHQ-9 and Beck’s Depression Inventory
 • 67 % have had robust response (average improvement was 11 points)
 • Within the group of patients 43 % achieved remission
• Most patients note improvement by the end of treatment but some take a month or more to recognize the improvement
 • Role of neuroplasticity
• One patient using the Deep TMS system had a seizure
 • Sleep deprived and taking Bupropion
 • He elected to continue treatment and continued using different device and had no further seizures
Indications for TMS and which patients respond the best

• FDA cleared for Major Depressive Disorder
 • Moderate to severe and failed one adequate medication trial
• Insurance carriers require at least 4 antidepressant failures
• Patients with concomitant Personality Disorders may not respond as well
• Duration of current Depressive episode may or many not be a factor
Comparison of TMS Devices

• Physical effects dependent on shape of magnetic coil
 • Figure eight shape is most common
 • First one developed
 • Neuronetics NeuroStar and MagStim devices
 • H-shaped coil
 • Brainsway device
 • Deeper stimulation with stronger pulses
Comparison of TMS Devices

• Southern Maine TMS experience
 • Six years using either Neuronetics or Brainsway devices
 • Three years each device with 100 patients treated with each device
 • Same patient selection criteria
 • MDD, failed at least 4 antidepressants
 • Same treating technicians and protocols
Comparison of TMS Devices

• Results
 • Less deep stimulation had the best results
 • About 10% better results on PHQ-9
 • More patients could tolerate the treatment
 • Only patient to have a seizure in 8 years of treating patients was with the Deep TMS system
 • More patients dropped out of treatment with the Deep TMS treatment
 • Many moved to NeuroStar system and completed treatment
Future of TMS

• Early in the evolution of the treatment modality
 • Protocols for treating other conditions need development
 • Shapes of waveforms, pulse frequency, duration, location of treatment, etc.

• Conditions under investigation
 • Adolescent Major Depressive Disorder
 • Bipolar Depression
 • Obsessive Compulsive Disorder
 • Substance Dependence
 • Tobacco, Opioids, others
Future of TMS

• Conditions under investigation (continued)
 • PTSD
 • Parkinson’s Disease
 • ADHD
 • Cognitive Impairment
 • Tinnitus
 • Auditory Hallucinations
Conclusion

- rTMS is at least the best initial intervention for Treatment Resistant Depression (TRD)
- rTMS is safe and effective
- rTMS is well tolerated and has no cognitive side effects
- Future improvements to the current state of the technology are ongoing
- Many more conditions will be treated by this modality in the future
References

• O’ Reardon, J.P., et. al. (2007). Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biological Psychiatry, 62, 1208-1216
• George, M. S., et. al. (2010). Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham controlled randomized trial. Archives of General Psychiatry, 67, 507-516
• Carpenter, L. L., et. al. (2012). Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice. Depression and Anxiety, 29, 587-596.