John S

John M. Stubbs, Ph.D.

Chair Associate Professor, Chemistry


Peter and Cecile Morgane Hall 003
On campus

Dr. Stubbs is primarily interested in using computers to investigate and explain chemical phenomena.  His current research focuses on two distinct areas: DNA hybridization on a surface, an important problem for DNA sensor arrays; and supercritical fluids as separation media, which can greatly improve purification efficiency.  He is also interested in the hardware and software aspects of computers in chemistry, primarily using the GNU/Linux operating system and FORTRAN programming language.



Ph.D., Chemistry
University of Minnesota
B.A., Chemistry and German
University of Minnesota, Morris


Current research

Application of a coarse-grained DNA model to denaturation and hybridization transitions in solution and with surface-bound DNA strands.

Selected publications

Cooper, S.J.; Stubbs, J.M. `The effect of unequal strand length on short DNA duplex hybridization in a model microarray system: A Monte Carlo simulation study,' Chem. Phys. Lett., 634, 230-235 (2015)


Stubbs, J.M. `Solute extraction via supercritical ethane from poly(ethylene glycol): A Monte Carlo simulation study,' Fluid Phase Equilib., 360, 351-356 (2013).


Huber, M.T.; Stubbs, J.M. `The influence of carbon dioxide cosolvent on solubility in poly(ethylene glycol)', Theor. Chem. Acc. 131, 1276(1-6) (2012).


Bayron, J.A.; Deveau, A.M.; Stubbs, J.M. `Conformational analysis of 6α- and 6β-naltrexol and derivatives and relationship to opioid receptor affinity', J. Chem. Inf. Model. 52, 391-395 (2012).


Allen, J.H.; Schoch, E.T.; Stubbs, J.M. `Effect of surface binding on heterogeneous DNA melting equilibria: A Monte Carlo simulation study', J. Phys. Chem. B 115, 1720-1726 (2011).


Research interests

Dr. Stubbs' research interests are focused in two areas: DNA melting and hybridization transitions and tunable solvents for separations.  The primary research method for both areas is Monte Carlo molecular simulation, which uses computers to look at model systems and applies statistical mechanics to determine properties of interest.

The first area is focused on DNA sensor microarray technology, which is composed of single-stranded DNA oligomers bound to a surface. The development of this technology relies on knowledge of DNA denaturation or "melting" and hybridization transitions, and their sensitivity to many variables has left several questions unanswered, such as the mechanism by which changes in physical environment between solution and bound DNA act to influence hybridization, or competitive adsorption of nearly identical sequences.

The second area attempts to improve upon separation technology using fairly innocuous materials such as supercritical carbon dioxide and polyethylene glycol to achieve what traditional processes do with more detrimental materials.  Molecular simulations allow the modeling of such systems with the goal of optimizing solvation conditions and is done by carrying out calculations with varying thermodynamic (e.g. temperature and/or pressure) conditions and compositions.

Research topics


This website uses cookies to understand how you use the website and to improve your experience. By continuing to use the website, you accept the University of New England’s use of cookies and similar technologies. To learn more about our use of cookies and how to manage your browser cookie settings, please review our Privacy Notice.