Headshot of Luis Queme

Luis F. Queme, M.D., Ph.D.

Assistant Professor, Department of Biomedical Sciences, COM


Stella Maris Hall 203A
Biddeford Campus

Luis Queme obtained his BS and MD from the Francisco Marroquin University in Guatemala City, Guatemala in 2007 and received his PhD in Cell Information Medicine from Nagoya University, Nagoya, Japan in 2013, after researching the role of growth factors in the development of delayed onset muscle soreness under Prof. Kazue Mizumura. He then moved to Cincinnati Ohio for a postdoctoral fellowship with Dr. Michael Jankowski at the Division of Pain Management in the Department of Anesthesia at Cincinnati Children’s Hospital where his research focused on the dual role of primary muscle afferents in controlling both nociception and the cardiovascular reflexes in response to muscle activity with the support of a postdoctoral fellowship from the American Heart Association. He later transitioned to an Instructor faculty position in the same department, focusing his research in the neuroimmune interactions that modulate the effects of stress in the development of chronic pain.

In the fall of 2022 he joined the Department of Biomedical Sciences at the University of New England College of Osteopathic Medicine as an Assistant Professor.  Current NIH-funded projects focus on the role of macrophages in the development of long-lasting muscle pain using a multidisciplinary approach that combines molecular biology, ex-vivo electrophysiology and AI-driven behavioral analysis. 



Francisco Marroquin University, Guatemala City, Guatemala
Research Institute of Environmental Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
Francisco Marroquin University, Guatemala City, Guatemala

Post-Doctoral Training

Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center


Current research


  • Somatosensation
  • Musculoskeletal Pain
  • Chronic Pain
  • Neuroimmune Interactions
  • Non-neuronal regulation of Pain
  • Cell-cell Communication


Selected publications

Queme LF, Jankowski MP.  Chapter: Electrophysiological recordings on muscle primary sensory neurons using a muscle-nerve-dorsal root ganglion-spinal cord ex-vivo preparation. Book: Contemporary approaches to the study of pain: from molecules to neural networks. Editor: Rebecca Seal. Publisher: Springer Nature. 2022.

Queme LF, Dourson AJ, Hofmann MC, Butterfield A, Paladini RD, Jankowski MP. Disruption of Hyaluronic Acid in Skeletal Muscle Induces Decreased Voluntary Activity via Chemosensitive Muscle Afferent Sensitization in Male Mice. ENEURO. 0522-21.2022; DOI: 10.1523/ENEURO.0522-21.2022

Nagaraja S, Queme LF, Hofmann MC, Tewari SG, Jankowski MP, Reifman J.  In silico Identification of Key Factors Driving the Response of Muscle Sensory Neurons to Noxious Stimuli. Front. Neurosci. 2021 Sept. DOI: 10.3389/fnins.2021.719735

Queme LF, Weyler AA, Cohen ER, Hudgins RC, Jankowski MP. A role for peripheral GDNF signaling in ischemic myalgia development. Proc Natl Acad Sci 2020 Jan, 117 (1) 698-707; DOI: 10.1073/pnas.1910905116

Queme LF, Jankowski MP. Sex differences and mechanisms of muscle pain. Curr Opin Physiol. 2019 Oct; 11:1-6. DOI: 10.1016/j.cophys.2019.03.006 Epub 2019 Apr 2

He X, Zhang L, Queme LF, Liu X, Lu A, Waclaw RR, Dong X, Zhou W, Kidd G, Yoon SO, Buonanno A, Rubin JB, Xin M, Nave KA, Trapp BD, Jankowski MP, Lu QR. A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med. 2018 Mar;24(3):338-351. DOI: 10.1038/nm.4483

Queme LF, Ross JL, Jankowski MP. Peripheral Mechanisms of Ischemic Myalgia. Front Cell Neurosci. 2017 Dec 22;11:419. DOI: 10.3389/fncel.2017.00419

Queme LF, Ross JL, Lu P, Hudgins RC and Jankowski MP. Dual modulation of nociception and cardiovascular reflexes during peripheral ischemia through P2Y1 receptor dependent sensitization of muscle afferents. J Neurosci. 2016; 36(1):19-30. DOI:10.1523/JNEUROSCI.2856-15.2016

Ross JL, Queme LF, Shank AT, Hudgins RC, Jankowski MP. Sensitization of group III and IV muscle afferents in the mouse after ischemia and reperfusion injury. J Pain. 2014; 15(12):1257-70. DOI:10.1016/j.jpain.2014.09.003

Murase S, Terazawa E, Hirate K, Yamanaka H, Kanda H, Noguchi K, Ota H, Queme F, Taguchi T, Mizumura K. Upregulated Glial Cell Line-derived Neurotrophic Factor Through Cyclooxygenase-2 Activation in the Muscle is Required for Mechanical Hyperalgesia After Exercise in Rats. J Physiol. 2013 Jun 15;591(12):3035-48. DOI: 10.1113/jphysiol.2012.249235

Murase S, Terazawa E, Queme F, Ota H, Matsuda T, Hirate K, Kozaki Y, Katanosaka K, Taguchi T, Urai H, Mizumura K. Bradykinin and Nerve Growth Factor Play Pivotal Roles in Muscular Mechanical Hyperalgesia After Exercise (Delayed-onset Muscle Soreness). J Neurosci. 2010 Mar 10;30(10):3752-61. DOI: 10.1523/JNEUROSCI.3803-09.2010

Research interests

Peripheral mechanisms of the transition from acute to chronic pain, effect of stress in the development of muscle pain, Peripheral neuroimmune interactions.